

Review of X-ray FEL Projects

John Corlett LBNL

LINAC 2012 Tel Aviv, September 2012

and high-brightness beam to support the FEL interaction at X-ray wavelengths

The X-FEL revolution with linac-driven FELs

- Linac beam quality now allows FELs to operate at wavelengths in the hard X-ray regime
- FLASH set the stage with a VUV FEL, now upgraded to reach ~4 nm
- LCLS and now SACLA have demonstrated hard X-ray production ~1Å and less
- FERMI@elettra is the world's first seeded FEL soft X-ray user facility
- LCLS now offers enhanced temporal coherence through self-seeding
- Extraordinary power, coherence, and time resolution are now available from X-ray FELs
- New projects offer even greater capabilities for X-ray science

FRMi@elet

X-ray FEL activities

- Existing X-ray FEL user facilities and their upgrade projects
 FLASH
 - LCLS
 - FERMI@elettra
 - SACLA
- Under construction and planned user facility projects
 - European XFEL
 - SwissFEL
 - PAL-XFEL
 - SXFEL
 - NGLS
- Other proposals under development
 - LUNEX-5, MaRIE / SPARX / ...
- Many FEL R&D projects and facilities
 - APEX, ATF, CLARA, JLAB, MAX-IV, NLCTA, SCSS, SDL, SDUV FEL,
 SPARC, WiFEL,
 5

Overview of this talk

- Existing X-ray FEL user facilities and their upgrade projects
 FLASH
 - LCLS (TU2A03)
 - FERMI@elettra
 - SACLA (TU2A02)
- Under construction and planned user facility projects
 - European XFEL (MO1A02)
 - SwissFEL
 - PAL-XFEL
 - SXFEL
 - NGLS
- Other proposals under development – LUNEX-5, MaRIE / SPARX / ...
- Many FEL R&D projects and facilities
 - APEX, ATF, CLARA, JLAB, MAX-IV, NLCTA, SCSS, SDL, SDUV FEL,
 SPARC, WiFEL,
 6

FLASH at DESY in Hamburg

- Single-pass high-gain SASE
 Free-Electron Laser
 - SASE = self-amplified spontaneous emission
- Superconducting TESLA linac technology
- FEL user facility since Summer 2005
- sFLASH is developing HHG seeded FEL operation
- Second undulator beam line (FLASH2) under construction
- FLASH is also a test bench for the European XFEL and the International Linear Collider (ILC)

FLASH at DESY in Hamburg

- Single-pass high-gain SASE **Free-Electron Laser**
 - SASE = self-amplified spontaneous emission
- Superconducting TESLA linac technology
- FEL user facility since Summer 2005

- SFLASH is developing FEL operation
 Second undulator beam line (FLASH2) under construction
 Second undulator beam line (FLASH2) International Linear Collider (ILC)

9-cell superconducting cavities @ 1.3 GHz

Burst mode: acceleration for 800 µs at 10 Hz

Efficient acceleration due to high Q ~ 10¹⁰

Energy gain ~25 MV/m

FLASH layout

Siegfried Schreiber

FLASH2 upgrade project

- Second FEL undulator line with variable gap undulators in a separate tunnel
- Second experimental hall for photon beamlines and experiments
- Implementation of seeding schemes for improved radiation properties
- Under construction; first beam expected late summer 2013

FLASH2 design goals

- Goals
 - Increase beam time for user experiments
 - Simultaneous operation of different user experiments at FLASH1 and FLASH2
 - Improved photon beam quality
 - Faster tuning
- Beam energy fixed by FLASH1 wavelength, FLASH2 wavelength adjusted by the undulator gap
- Separate bunch train to FLASH1 and FLASH2
 - With different bunch pattern
 - Stable operation of kicker septum system
 - Operation with two injector laser systems
 - Operation of (slightly) different bunch charges

sFLASH: the seeding experiment at FLASH

Christoph Lechner

Superimpose electron bunch with HHG radiation in the undulator ("seeding")

- Electron bunch as amplifier
- Combines stability (HHG) and high peak power (FEL)
 - Longitudinal coherence
 - Stable pulse spectrum and energy
 - Stable arrival time synchronized to laser (goal 10 fs)

FELs at DESY in Hamburg

Siegfried Schreiber

Undulator Hall

FERMI at Sincrotrone Trieste

FERMI@Elettra FEL: 100 – 4 nm HGHG World's first seeded X-FEL user facility

- High peak power 0.3 GW range (~100 µJ per pulse)
- Short temporal structure sub-ps to 10 fs time scale •

Experim. Hall

50 m

- **Tunable wavelength APPLE II-type undulators**
- Variable polarization horizontal/circular/vertical

200 m

Injector

Extension

Tunnel +

FERMI@elettra layout

- 1.2 GeV S-band normal-conducting copper linac
- 100 pC, pulsed 10 Hz

FERMI's two seeded FELs

- FEL-1: single stage high gain harmonic generation (HGHG) from UV laser seed
 - Spectral range from ~80 nm down to 20nm
- FEL-2: double cascade HGHG
 - Spectral range from 20 to ~4 nm
 - Fresh bunch technique

Recent developments

- New systems and instrumentation installed and commissioned for control and diagnostics of longitudinal phase space
 - High energy RF deflector
 - Laser heater
 - X-Band cavity for phase space linearization

- X-band linearizer allows to compress more efficiently the electron beam
- Laser heater is efficiently used to suppress the micro-bunching that develops with high current beams

Recent FEL-1 results

With compression using the x-band linearizer, FEL power increased significantly in all the FERMI FEL-1 spectral range

About 100 µJ has been achieved in the 65-20 nm spectral range

average: (83.8 ± 0.3) i

FEL-1 demonstrates excellent wavelength stability

FEL wavelength (nm)

Wavelength =	35.4 nm (35.0 eV)
Lambda jitter =	0.046 %
Bandwidth =	22.0 meV
(rms)	(6.2x10 ⁻⁴)
Bandwidth =	0.0065 nm
jitter	(29 %)

 Wavelength fluctuations are strongly correlated with beam properties fluctuations:

shot#

- After bunch compression (bunch length/peak current)
- In main beam dump (energy)

FEL-2 first stage initial lasing

- 52 nm FEL output on diagnostics screens after the radiator of the first stage of FEL-2
- 5th harmonic in first stage of cascade HGHG

- October 2012
 - Commissioning of FEL-2 double stage HGHG cascade
- October-November 2012
 - Installation in the gun test facility of the new 50 Hz gun and start of gun commissioning
- December 2012
 - First run fully dedicated to external user experiments on FEL-1
- March-May 2013
 - Linac energy upgrade to 1.5 GeV and 50 Hz operation
- Fall 2013
 - First tentative user experiments on FEL-2

- 14 GeV S-band linac
- 1200-m long bypass (old PEP-II line) goes around LCLS-I
- Two variable-gap undulator SASE FELs (HXR & SXR) in new tunnel
- Baseline is 60 Hz in each undulator

SACLA XFEL at RIKEN Shortest wavelength FEL, 0.63 Å

TU2A02

SACLA XFEL upgrade plans

Broader wavelength range Higher efficiency and reliability

TU2A02

Hitoshi Tanaka

SACLA

- Under construction by 12 European Nations at DESY, Hamburg
- 5 FEL tunnels
- Initially 3 moveable gap undulators for hard and soft X-rays
- SASE FEL wavelength 4 0.05 nm

European XFEL layout

- Warm L-band RF gun
- Up to 17.5 GeV superconducting linac
- 23.6 MV/m accelerating gradient
- 0.02 1 nC charge per bunch
- 10 Hz, 600 µs macropulse, 4.5 MHz bunch rate within pulse
- 27000 pulses per second
- 500 kW beam power

European XFEL status & schedule

- Boring of 5.8 km of tunnel finished June 2012
- Civil construction of underground and surface buildings ongoing
- Orders for major accelerator parts placed, series production started
- Installation of tunnel infrastructure started
- First accelerator components into tunnel mid 2013
- First beam in injector mid 2014
- Tunnel closed and linac cool down mid 2015
- First lasing possible end of 2015

SwissFEL proposed construction site Sven Reiche

PAUL SCHERRER INSTITUT

SwissFEL compact footprint

- 2 initial SASE / self-seeded FELs
 - "Aramis" HXR: 0.8 7 Å
 - "Athos" SXR: 0.7 7 nm

SwissFEL layout

Sven Reiche

- S-band RF photo-electron gun, injector, 100 Hz
- C-band linac up to 6 GeV
 - 27 MV/m
 - Fewer RF stations, less real estate and electrical power than S-band
- Branch line for Athos (SXR FEL)
- 2 bunch operation (28 ns) with distribution to Aramis and Athos at 100 Hz

SwissFEL timeline

Sven Reiche

Pohang Accelerator Laboratory XFEL Heung-Sik Kang

- 3 Hard X-ray / 2 Soft X-ray FELs
- Soft x-ray: 1 nm ~ 10 nm
- Hard X-ray: 1.0 ~ 0.1 nm
 - Extendable to 0.06 nm
- Nominal : 30 ~ 100 fs (200 pC)
- Short : < 5 fs (20 pC)
- Ultra short: < 0.5 fs by ESASE

1 Å Hard X-ray 10-GeV SASE XFEL

Project Period: 2011 ~ 2015

PAL XFEL design parameters

- S-band linac at 60 Hz
- Three bunch compressors for flexibility in beam control
- Simultaneous or independent operation of soft X-ray FEL beamline is feasible
 - Single bunch: pulse by pulse kick to soft X-ray branch line
 - Two bunches (20 ns separation): bunch by bunch kick to soft X-ray line

Shanghai Soft X-ray FEL (SXFEL)

SXFEL concept on the Shanghai Synchrotron Radiation Facility campus

SXFE

SSRF

10nm two-stage cascading 10116 FEL demonstrator (3 nm upgrade) Project approved February 2011 Technical design studies under v v Collaboration with Tsinghua University

SXFEL design parameters

Parameters	HGHG	Upgrade	Unit
Output Wavelength	9	3	nm
Bunch charge	0.5~1	0.5~1	nC
Energy	0.84	1.2~1.3	GeV
Energy spread	0.1~0.15%	0.15%	
Energy spread (sliced)	0.02%	0.03%	
Normalized emittance	2.0~2.5	2.0~2.5	mm.mrad
Pulse length (FWHM)	1.	1	ps
Peak current	~0.5	0.5	kA
Rep. rate	1~10	1~10	Hz

Next Generation Light Source (NGLS)

BERKELEY L

NGLS performance goals

- High rep-rate soft X-ray laser array
 - Up to MHz pulse rate
 - Average coherent power up to ~100 W
- Spatially and temporally coherent X-rays (seeded)
 - Ultrashort pulses from ≤1 fs to ~300 fs
 - Narrow bandwidth to 50 meV
- Tunable X-rays
 - Adjustable photon energy: 0.27 1.2 keV (harmonics to 6 keV)
 - Polarization control
 - Moderate to high flux with 10⁸ 10¹² photons/pulse
- Expandable in Capability and Capacity

NGLS layout (concept)

- 30-300 pC bunches
- 1 MHz bunch rate (+)
- 2.4 GeV
- ~750 kW e-beam power
- ~16 MV/m gradient
- TESLA-type cavities operated in CW mode

- 2 bunch compressors
- 1 laser heater
- 3 initial seeded or selfseeded FELs

NGLS status

Proposal for approval of Conceptual Design (CD-0) Submitted to the U.S. Department of Energy Office of Basic Energy Sciences

December 2010

- DOE approved "Mission Need" for the Next Generation Light Source in April 2011
- LBNL is performing R&D, design studies, developing the science case, and building partnerships and collaborations
 - APEX MHz rate gun
 - Photocathodes
 - Superconducting undulators
 - Soft X-ray self-seeding
 - Beam spreader
 - Detectors
 - Seed lasers

40

Linac partnerships being built

NATIONAL ACCELERATOR LABORATOR

BERKELEY

Summary: many exciting X-ray FEL projects

- Several operational: upgrades to enhance performance and capacity
 - FLASH: FLASH2 adds capacity and coherence capability (sFLASH)
 - LCLS: LCLS-II adds capacity and capability in tuning SXR/HXR
 - FERMI@elettra: FEL-2 promises additional coherence at 4 nm; 50 Hz and 1.5 GeV upgrade
 - SACLA: Upgrades to improve stability, add capacity, and extend wavelength range
- Several new projects are at various stages of development
 - XFEL: 17.5 GeV SRF linac; FELs 4 nm to 0.5 Å; high-power beams (2015)
 - SwissFEL: compact 6 GeV facility with SXR and HXR (~1 Å) capability (2017)
 - PALFEL: 10 GeV facility with SXR and HXR (~0.6 Å) (2015)
 - SXFEL: design study for 1.3 GeV seeded SXR FEL
 - NGLS: conceptual design for 2.4 GeV high average power CW SRF, SXR laser facility
- Other proposals under development
 - LUNEX-5, MaRIE / SPARX / ...
- Many FEL R&D projects and facilities
 - APEX, ATF, CLARA, JLAB, MAX-IV, NLCTA, SCSS, SDL, SDUV FEL, SPARC, WiFEL,

Thank you for your attention!

