

Chinese ADS Project and Proton Accelerator Development

Yunlong Chi IHEP, CAS

LINAC 12

Outline

- **1.** Introduction
- 2. ADS road map and accelerator progress in China
- 3. CSNS progress
- 4. CPHS in Tsinghua University
- 5. Conclusion

1. Introduction

- Proton accelerator are more and more used in the nuclear energy, material sciense, biology, medicine, etc.,
- Development of proton accelerator is getting into a high speed in China,
- Key technology studies are common : Ion Source, RFQ, Low-β SC cavities, High power coupler, SSA RF source, Cryogenics, Control & Instrumentation…
- This presentation introduce the proton accelerators in China (ADS, CSNS, CPHS).

INSTITUTE OF HIGH ENERGY PHYSI

2. ADS Road Map and Accelerator Progress in China

国科学院高能物理

R&D Phase I (50MeV) budget has been approved;

R&D Budget : 1.8 Billion CNY;

Linac Budget : 0.65 Billion CNY.

ADS Proton Beam Requirments

Particle	Proton	
Energy	1.5	GeV
Current	10	mA
Beam power	15	MW
Frequency	162.5/325/650	MHz
Duty factor	100	%
Beam Loss	<1 (0.3)	W/m
	<25000	1s <t<10s< td=""></t<10s<>
Beam trips/year	<2500	10s <t<5m< td=""></t<5m<>
	<25	t>5m

Layout of Proton Accelerator

- □ SC spoke cavities: Epeak<32.5 MV/m, Bpeak<65 mT
- □ SC elliptical cavities: Epeak<39 MV/m, Bpeak<65 mT
- □ Operation temperature for all SC cavities: 1.8 K
- Apertures for SC cavities: 35 mm for E<10 MeV; 40 mm for Spoke021; 50 mm for Spoke040; 100mm for Ellip063 and Ellip082. HWR cavities for Injector II: 40 mm</p>
- Phase advance per cell (zero current, both transverse and longitudinal): <90 degree</p>
- \Box RF frequency
 - Injector-I: 325 MHz
 - Injector-II: 162.5 MHz
 - Main linac: 325 MHz (Spoke sections) and 650 MHz (Elliptical sections)
- □ Maximum magnetic field for solenoids: 5 T

Linac Design

RFQ of Injector I -- Parameters

Parameters	Value	Parameters	Value
Frequency (MHz)	325	Cavity power dissipation (kW)	272.94 [1.4* Psuperfish (194.96)]
Injection energy (keV)	35	Total power (kW)	320.94
Output energy (MeV)	3.2128	Avg. Copper power/Length (kW/m)	41.68
Beam current (mA)	15	Avg. Copper power/Area (W/cm ²)	3.25
Beam duty factor	100%	Max. copper power/Area (W/cm ²)	3.77
Inter-vane voltage V (kV)	55	Input norm. rms emittance(x,y,z)(πmm.mrad)	0.2/0.2/0
Beam transmission	98.7%	Output norm. rms emittance(x/y/z) (πmm.mrad/MeV-deg)	0.2/0.2/0.0612
Average bore radius r_0 (mm)	2.775	Vane length (cm)	467.75
Vane tip curvature (mm)	2.775	Gap1(entrance) (cm)	1.10
Maximum surface field (MV/m)	28.88 (1.62Kilp.)	Gap2(exit) (cm)	1.10
		Accelerator length (cm)	469.95

RFQ of Injector I -- Fabrication

The1st module has been brazed.

Vacuum leakage check is done after brazing, only one leakage position located at the vacuum flange brazing joint is found (1.9*10E-9 Pa .m^3/s). After copper-plated at the leakage position, the total leakage now is in the order of 10E-11 Pa .m^3/s.

Machining for the fourth module underway

Spoke012 Cavity (β=0.12) of Injector I

Main Geometrical parameters	Units	Value
Diameter of cavity	mm	468
Length of cavity	mm	180
Diameter of beam tube	mm	35
RF parameters	Units	Value
E _{peak} /E _{acc}		4.54
B _{peak} /E _{acc}	mT/(MV/m)	6.37
G	Ω	61
Transition Time Factor		0.76
R/Q@β=0.12	Ω	142

Note: Effective length for Eacc is defined as $\beta\lambda$

Institute of High Energy Physics, Chinese Academy of Sciences

The Convex end wall (right) is adopted, which has better mechanical performance than the flat one (left).

Spoke012 Cavity -- Fabrication

Fabrication of spoke012 cavity will be completed in Oct, 2012. And the vertical test may be done at the end of 2012.

Spoke bar after cut

EBW of endwall and beam tube

EBW of spoke bar

Deep drawing of endwall

Coupler slice

Spoke slice

LINAC 12

Institute of High Energy Physics, Chinese Academy of Sciences

Deep drawing of spoke bar

325MHz/10KW Solid State Amplifier for Spoke012

Testing Item	Requirements
frequency	325 MHz \pm 3 MHz
RF standard	Continuous tuning
Output Power	$\geq 10 kW (CW)$
Harmonic	≤-50dBc
Random Harmonic	≤-80dBc
Amplitude stability	$\leq \pm 1\%$
Phase stability	$\leq \pm 1^{\circ}$
Output interface	50Ω coaxial

It has been tested, all specifications are reached.

RFQ of Injector II

Parameters	Value	Unit
Frequency	162.5	MHz
Injection Energy	35	KeV
Output Energy	2.1	MeV
Beam current (CW)	15	mA
Vane Tip Voltage	65	kV
RFQ Length	4.16	meters
Transmission	99.6	%
Transverse ε (x,y)	0.3	π .mm.mrad
Longitudinal ϵ	0.92	keV-ns
TWISS, α_x , α_y	-1.16, 1.43	
Modulation m _{max}	2.35	
Total # of Cells	191	
ρ/r _o	0.75	

LINAC 12

HWR Cavity of Injector II

Parameters		
Frequency	162.5MHz	
Gβ	0.09	
E_{peak}/E_{acc}	5.34	
B_{peak}/E_{acc}	10.92mT/Mv/m	
R_a/Q_0	148	
E_{peak}	25 MV/m	
B_{peak}	50 mT	
E _{acc}	4.7 MV/m	
U_{acc}	0.78 MV	
$G=R_s*Q_0$	28.5 Ω	
W	4 J	
P _{diss}	2.9 W	
Q ₀ (4.4K)	1.40E+09	

Copper Model

Fabrication would be finished in 2012.9.

LINAC 12

之間為從

HWR Coupler for Injector II

Window

HWR coupler

Testing (2012.7)

Coupler power exceeds 20 kW (CW, designed value), 2012.7

162.5MHz/20KW Solid State Amplifier for HWR

Testing Item	Requirements
frequency	162.5 MHz \pm 2 MHz
Freq. stability	$<\pm$ 1 \times 10-8/day
RF standard	0 dBm \sim 10dBm continuous tuning
Output Power	≥20kW (CW, Pulse) full reflection
Duty factor	$1\%\!\sim\!100\%$ tuning
Harmonic	≤-30dBc
Harmonic of PS	≤-50dBc
Random Harmonic	≤-60dBc
Amplitude stability	$\leq \pm 1 \times 10^{-2/24}$ hours
Phase stability	$\leq \pm 5^{\circ}$ /24 hours, open loop
Output interface	50Ω coaxial, $4-1/2$
It has been tested, a	Il specifications are reached.

LINAC 12

INSTITUTE OF HIGH ENERGY PHYSIC

Design Goal

Beam power	Repetition	Beam current (µA)	Energy	Max neutron flux*
(kW)	(Hz)		(GeV)	$(n/cm^2/s)$
100	25	63	1.6	2×10^7

* Measured at 14m from modulator

- Design goal will be met three years after acceptance.
- Project acceptance goal is 1/10 beam power goal.

*Acceptance Goal

Beam power	Repetition	Beam current	Energy	Max neutron flux*
(kW)	(Hz)	(µA)	(GeV)	$(n/cm^2/s)$
10	25	6.3	1.6	10 ⁵

• Upgradeable to 500kW at 25Hz in the second phase.

Key Milestones

- February 2001 idea of CSNS discussed
 - June 2005 proposal approved in principle by the central government (CD-0)
- January 2006 CAS funded 30M CNY for R&D 1
 - July 2007 Guangdong funded 40M CNY for R&D 2
- **December 2007** proposal reviewed
- September 2008 proposal approved
 - **October 2009** feasibility study reviewed
 - **April 2010** site preparation start
 - February 2011 feasibility study approved (CD-1)
 - May 2011 preliminary design approved (CD-2)

September 2011 construction start (CD-3)

Site Area

The Guangdong/Dongguan local government committed to provide a land of about 0.667km^2 for CSNS. 0.267km^2 is planned for the phase-I construction.

Conceptual Picture

IHEP will set up a new branch at Dongguan for CSNS construction. Artificial view of the campus of the site.

Site Scene

Budget

- Baseline--- the largest big-science project in China
 - 1.7B CNY(~US\$250M) from central government for project construction
 - 0.5B CNY and land from Guangdong/Dongguan local government for additional supports
- R&D
 - **35M CNY** (received) from CAS for R&D 1
 - 40M CNY (received) from Dongguan government for R&D
 2 (included in 0.5B CNY additional supports)
- Operation

0.14B CYN per year from central government

Layout of CSNS

• The phase-I CSNS facility consists of an 80-MeV H⁻ linac, a 1.6-GeV RCS, beam transport lines, a target station, and 3 instruments.

Linac Design

Front-end Design

RFQ

□ RFQ is under fabrication.

Major and minor vanes under fabrication: cooling water channels have been drilled and the ends have been plugged.

DTL Design

Tank parameters of CSNS DTL

Tank number	1	2	3	4
Output energy (MeV)	21.67	41.41	61.07	80.1
Length (m)	8.51	8.56	8.78	8.8
Number of cell	64	37	30	26
RF driving power (MW)	1.35	1.32	1.32	1.34
Total RF power (MW)	1.91	1.92	1.92	1.93
Accelerating field (MV/m)	2.86	2.96	2.96	3.0
Synchronous phase (degree)	-35 to -25	-25	-25	-25

- □ The total RF power with a 30mA beam in a tank is about 2MW. Each tank is fed by a 2.5MW klystron.
- **FFDD** lattice is used.

Linac Upgrade Options (PhaseII) - SC Linac

Elliptical Cavity from 130-250MeV		
Energy Range (MeV)	130-250	
RF frequency (MHz)	972	
Geometry βg	0.52	
Particle β range	0.48-0.61	
Eacc (MV/m)	13.02	
Energy gain (MeV/m)	1.92	
Epk/Eacc	3.72	
Bpk/Eacc(mT/(MV/m))	6.7	
Cell No/ Cavity	б	
Cell No/ Cryo	б	
Cell No.	240	
Length (m)	62	

Spoke Cavity from 80	-250MeV
Energy Range (MeV)	80-250
RF frequency (MHz)	324
Geometry βg	0.5
Particle β range	0.39-0.61
Eacc (MV/m)	5.6
Energy gain (MeV/m)	3.1
Epk/Eacc	4.46
Bpk/Eacc(mT/(MV/m))	7.1
Cell No./ Cavity	3
Cell No/ Cryo	9
Cell No.	108
Length (m)	56

Chinese Academy of Sciences

Lattice consists of 16 triplet cells, with a gap in the middle of arc and dispersion free straight section .

Circumference (m)	227.92
Superperiod	4
Number of dipoles/quadrupoles	24/48
Number of long drift	12
Total Length of long drift (m)	75
Betatron tunes (h/v)	4.82/4.80
Chromaticity (h/v)	-4.3/-8.2
Momentum compaction	0.041
RF harmonics	2
RF Freq. (MHz)	1.0241~2.44
RF Voltage (kV)	165
Trans. acceptance (πµm.rad)	540

1 Para

	R	&D Iter	ns passed accept	ance
		Data	Itom	Vacuum Chamber
		2008.06.05	Linac RF pulsed power source	
	1	2009.12.04	RCS injection bump magnet PS	Collimator Trapping Electrode
		2010.05.27	H [−] ion source test stand	Defecting Plate
		2010.06.10	LEBT electrostatic pre-chopper	
		2010.06.21	RCS injection bump magnet	Hanna A
	. /	2010.07.12	RCS dipole field measurement system	
		2010.07.14	RCS extraction kicker magnet PS	
Contraction		2010.07.26	RCS extraction kicker magnet	
		2010.10.21	RCS ceramic vacuum chamber	
	T / ,	2010.11.12	RCS dipole power supply	
		2010.12.17	RCS ferrite loaded RF cavity	
		2010.12.31	Bandwidth limited chopper	
		2011.04.15	RCS quadrupole & field measurement	

INSTITUTE OF HIGH ENERGY PHYSI

4. CPHS in Tsinghua University

Introduction to CPHS

CPHS (Compact Pulsed Hadron Source):

- Four neutron beam lines are planned in the CPHS project at Tsinghua University, among which two lines are being constructed for the Small Angle Neutron Scattering (SANS) and neutron imaging.
- The neutron will be generated by the proton beam bombarding a Beryllium target. The 13 MeV proton linac contains the ECR ion source, LEBT, RFQ, DTL and HEBT.

	Main parameters of the CPHS	S accelerator	system
	Beam power	16	kW
	Beam energy	13	MeV
	Average current	1.25	mA
	Pulse repetition rate	50	Hz
1	Protons per pulse	1.56×10^{14}	
•	Charges per pulse	$2.5 imes 10^{-5}$	С
g	Pulse energy	0.325	kJ
	Pulse length	500	μs
	Peak current	50	mA
he	Beam duty factor	2.5	%
	RF frequency	325	MHz
	Output energy of the ion	50	V
ן ו	source	50	Kev
РТ	Output energy of the RFQ	3	MeV
DI.	Output energy of the DTL	13	MeV

ECR source and LEBT

Output energy	50	keV
Output current	60	mA
Microwave frequency	2.45	GHz
Microwave average power	1.5~2.0	kW
Normalized RMS emittance	0.2	π mm·mrad

Phase space and proton pulse measured at the end of the LEBT.

The maximum output proton beam reaches 60 mA

LINAC 12

RFQ

Quadrupole error: $\pm 3\%$; Dipole component: $\pm 4\%$

Parameters	Value	Unit
Туре	Four	
Туре	vane	
Frequency	325	MHz
Input beam energy	50	keV
Output beam energy	3.0	MeV
Peak beam current	50	mA
Emitton og (nommer mag)	0.2	π mm· mr
Emittance (norm. rms)	0.2	ad
Maximum surface field	32.1	MV/m
Pulse length	0.5	ms
Pulse repetition rate	50	Hz
RF peak power	537	kW
Beam duty factor	2.5	%
Section number	3	

Main characteristics :

- 1) High transmission with shorter length: coupling plates are not necessary;
- 2) Optimization design of the peak field and the multipole field: vane-tip geometry are tailored as a function of longitudinal position;
- 3) No MEBT.

INSTITUTE OF HIGH ENERGY PHYSI

中国科学院高能物理研究所

DTL

Input/output energy	3.0/13	MeV
Peak current	50	mA
Synchronous phase	<i>-</i> 30→ <i>-</i> 24	Degree
Accelerating field	2.2→3.8	MV/m
Peak power	1.2	MW
Lens gradient	84.6	T/m
Lens effective length	4	cm
Cell number	40	
Total length	4.37	m

Others

5. Conclusion

- China has started several projects including ADS, CSNS CPHS program, and being to speed up them from the basic study to real facility .
- The key technologies in high intensity proton accelerator are severe challenges for us, overcoming is underway .
- There are many common interests in the high power proton acceleration technology for the Labs involved in proton accelerators. Close international cooperation are expected.

INSTITUTE OF HIGH ENERGY PHYSI

Thanks for your attention!