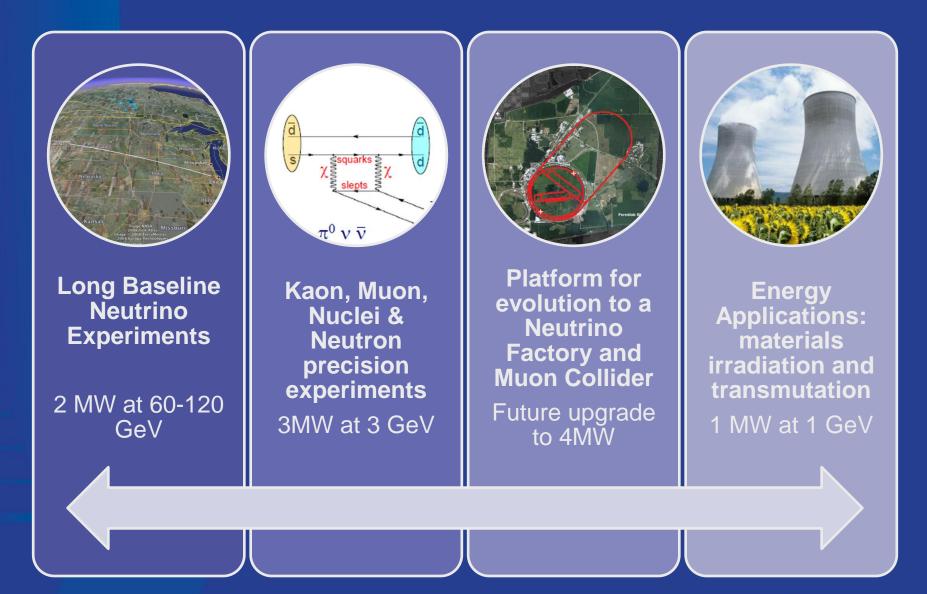
Status of Fermilab Project-X Stuart Henderson for the Project-X Team

2012 Linear Accelerator Conference September 11, 2012

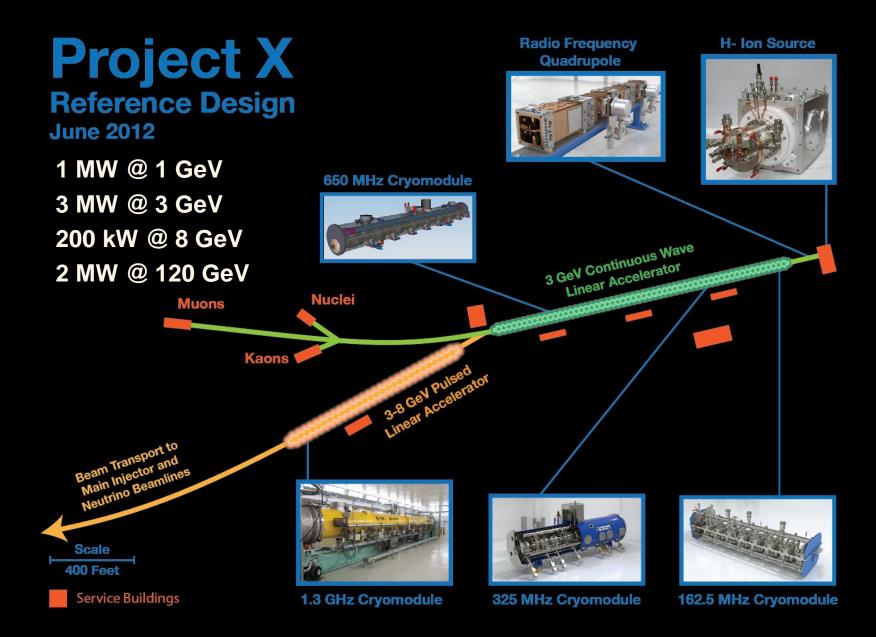
The Project-X Collaboration

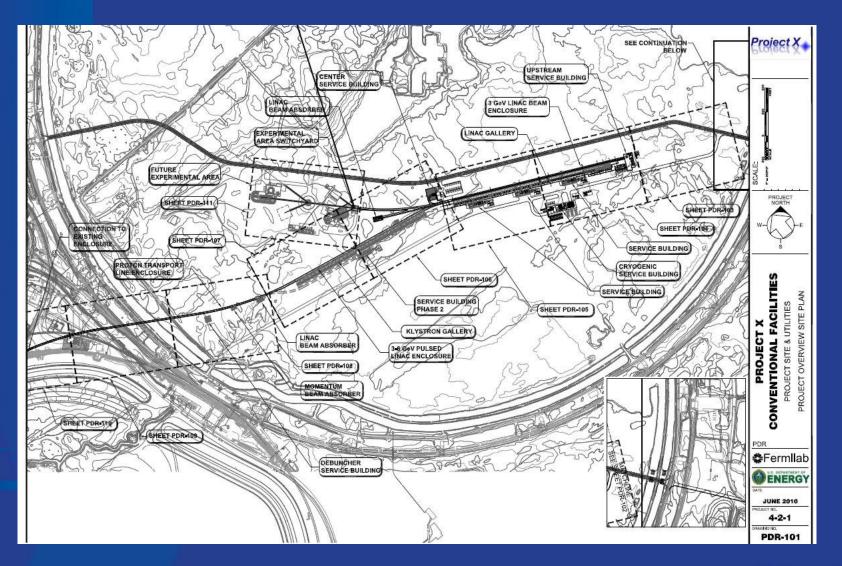
15 formal collaboration members supplemented with several informal collaborative relationships

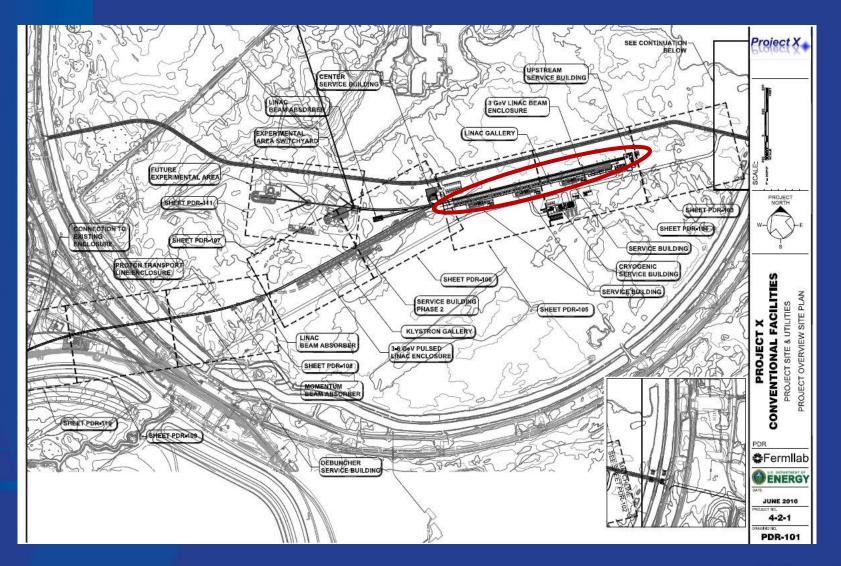
Project-X Will...

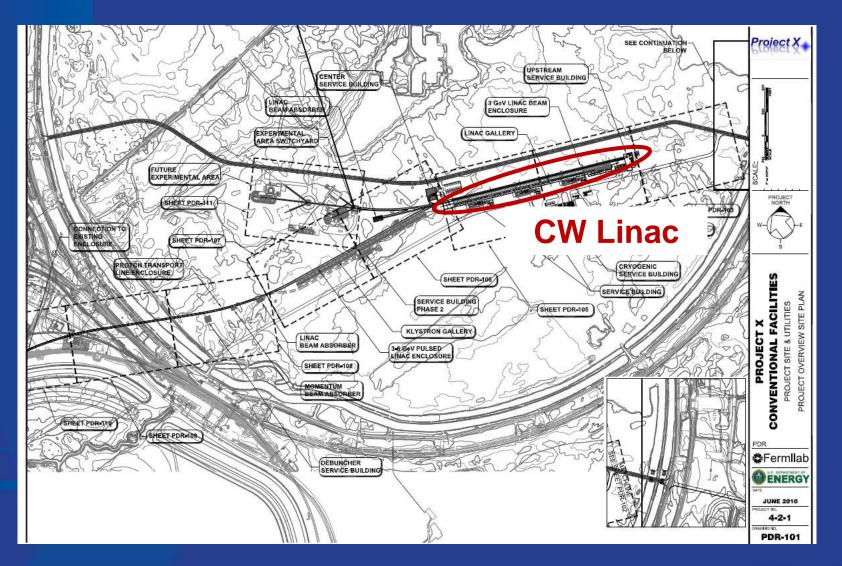

- Be the leading high power proton accelerator facility in the world
- Provide unique capability to deliver multi-MW beams to multiple experiments simultaneously, with variable bunch formats, across a broad range in energy: 1-120 GeV
- Enable a world-leading program in Intensity-Frontier particle physics and applications beyond HEP
- Extend the capabilities of the Fermilab's existing accelerator complex
- Be carried out as a collaboration between 15 institutions in the US and India

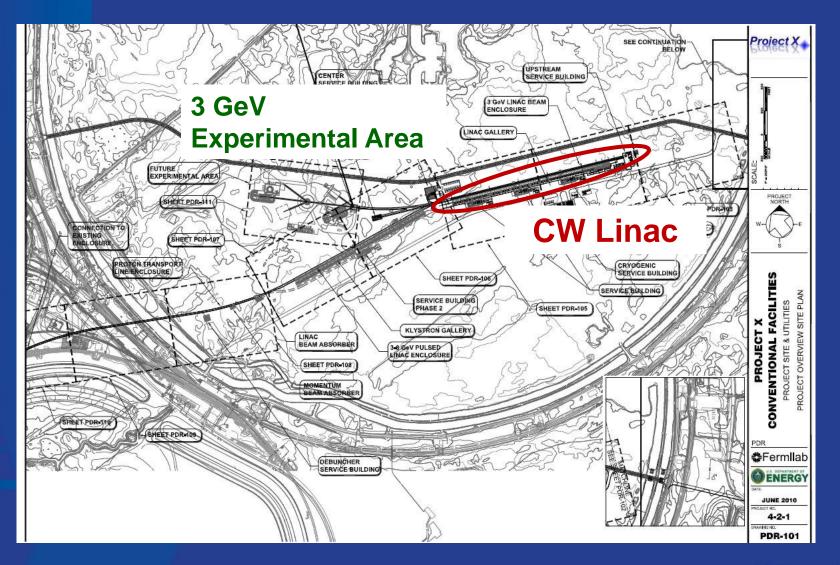
3

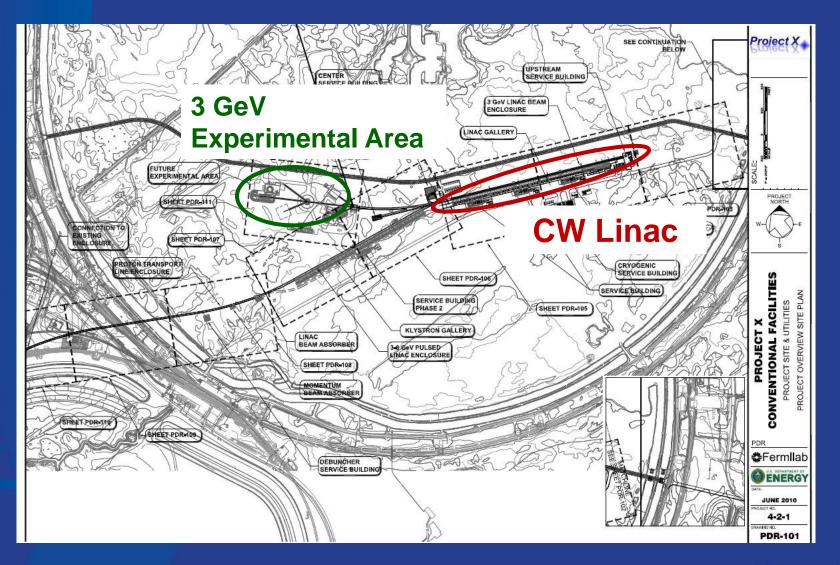


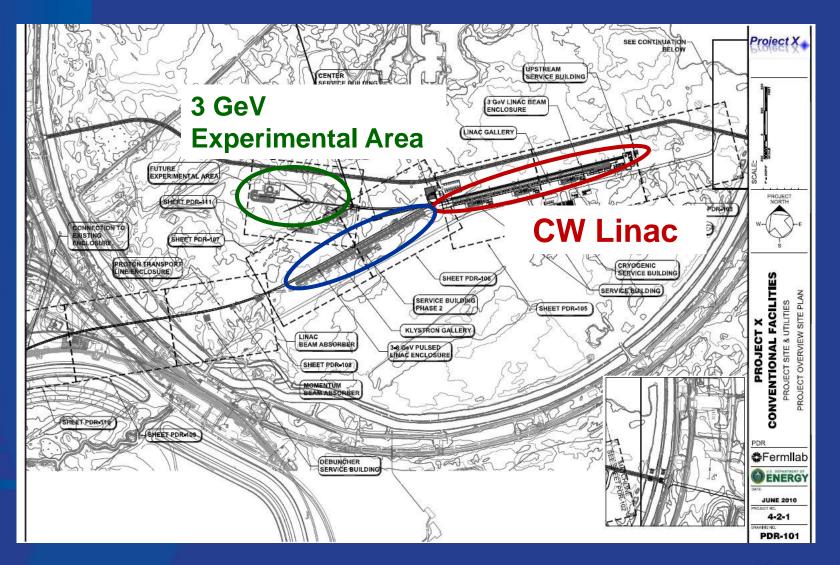

Project-X Scientific Mission

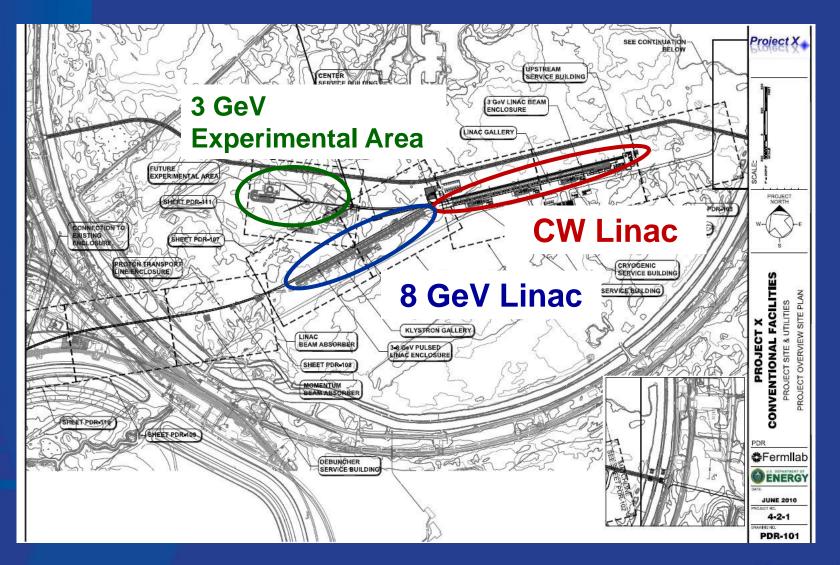

4

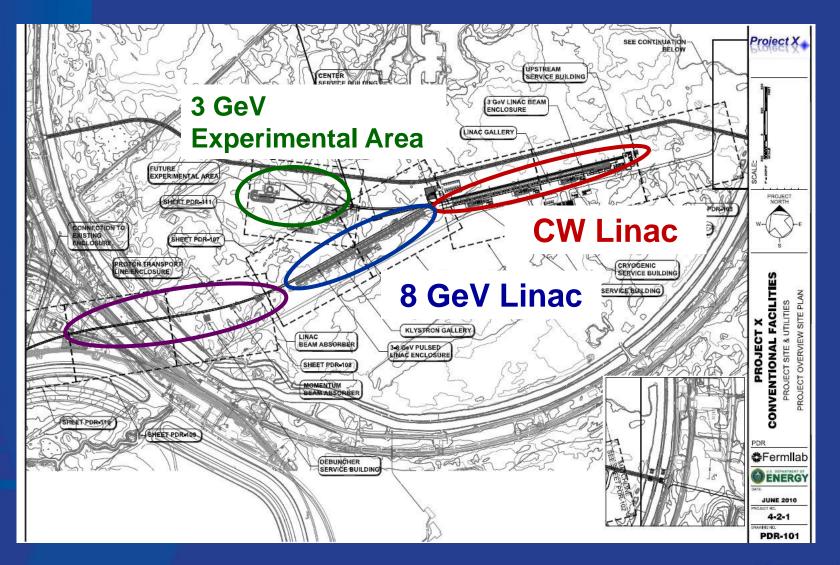


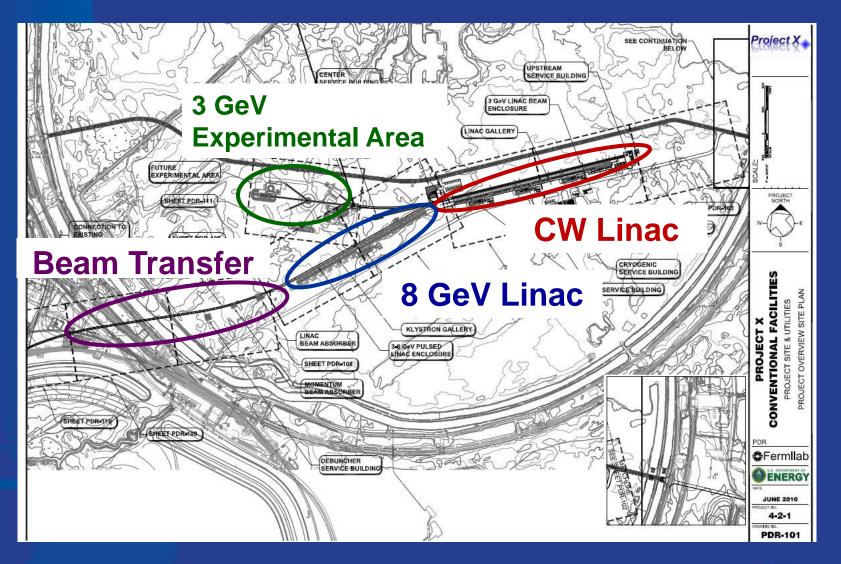












CW Linac	
Particle Type	H-
Beam Energy	3.0 GeV
Average Current	2 mA/1mA (1 GeV/3GeV)
Beam Power to 1 GeV Program	1 MW
Beam Power to 3 GeV Program	2.87 MW
Pulsed Linac	
Beam Energy	8.0 GeV
Pulse Rate and Width	10 Hz, 4.3 msec
Cycles to Main Injector/Recycler	6
Particles per Cycle to MI/Recycler	2.7×10 ¹³
Linac output beam power	340 kW
Beam Power to 8 GeV Program	170 kW
Main Injector/Recycler	
Beam Energy	120 GeV (max)
Cycle Time	1.2 sec
Particles per Cycle	1.5×10 ¹⁴
Beam Power to 120 GeV Program	2.4 MW

15 S. Henderson, LINAC12, September 11, 2012

CW Linac	
Particle Type	Н-
Beam Energy	3.0 GeV
Average Current	2 mA/1mA (1 GeV/3GeV)
Beam Power to 1 GeV Program	1 MW
Beam Power to 3 GeV Program	2.87 MW
Pulsed Linac	
Beam Energy	8.0 GeV
Pulse Rate and Width	10 Hz, 4.3 msec
Cycles to Main Injector/Recycler	6
Particles per Cycle to MI/Recycler	2.7×10 ¹³
Linac output beam power	340 kW
Beam Power to 8 GeV Program	170 kW
Main Injector/Recycler	
Beam Energy	120 GeV (max)
Cycle Time	1.2 sec
Particles per Cycle	1.5×10 ¹⁴
Beam Power to 120 GeV Program	2.4 MW

16 S. Henderson, LINAC12, September 11, 2012

CW Linac		
Particle Type	Н-	
Beam Energy	3.0 GeV	
Average Current	2 mA/1mA (1 GeV	//3GeV)
Beam Power to 1 GeV Program	1 MW	
Beam Power to 3 GeV Program	2.87 MW 🖌	
Pulsed Linac		
Beam Energy	8.0 GeV	
Pulse Rate and Width	10 Hz, 4.3 msec	
Cycles to Main Injector/Recycler	6	
Particles per Cycle to MI/Recycler	2.7×10 ¹³	simultaneous
Linac output beam power	340 kW	
Beam Power to 8 GeV Program	170 kW	
Main Injector/Recycler		
Beam Energy	120 GeV (max)	
Cycle Time	1.2 sec	
Particles per Cycle	1.5×10 ¹⁴	
Beam Power to 120 GeV Program	2.4 MW	

CW Linac		
Particle Type	Н-	
Beam Energy	3.0 GeV	
Average Current	2 mA/1mA (1 GeV	//3GeV)
Beam Power to 1 GeV Program	1 MW	
Beam Power to 3 GeV Program	2.87 MW 🖌	
Pulsed Linac		
Beam Energy	8.0 GeV	
Pulse Rate and Width	10 Hz, 4.3 msec	
Cycles to Main Injector/Recycler	6	
Particles per Cycle to MI/Recycler	2.7×10 ¹³	simultaneous
Linac output beam power	340 kW	
Beam Power to 8 GeV Program	170 kW 🗧 🗲	
Main Injector/Recycler		
Beam Energy	120 GeV (max)	
Cycle Time	1.2 sec	
Particles per Cycle	1.5×10 ¹⁴	
Beam Power to 120 GeV Program	2.4 MW	

CW Linac		
Particle Type	Н-	
Beam Energy	3.0 GeV	
Average Current	2 mA/1mA (1 GeV	//3GeV)
Beam Power to 1 GeV Program	1 MW 🔶	
Beam Power to 3 GeV Program	2.87 MW 🖌	
Pulsed Linac		
Beam Energy	8.0 GeV	
Pulse Rate and Width	10 Hz, 4.3 msec	
Cycles to Main Injector/Recycler	6	
Particles per Cycle to MI/Recycler	2.7×10 ¹³	simultaneous
Linac output beam power	340 kW	
Beam Power to 8 GeV Program	170 kW 🔶	
Main Injector/Recycler		
Beam Energy	120 GeV (max)	
Cycle Time	1.2 sec	
Particles per Cycle	1.5×10 ¹⁴	
Beam Power to 120 GeV Program	2.4 MW	

CW Linac		
Particle Type	Н-	
Beam Energy	3.0 GeV	
Average Current	2 mA/1mA (1 GeV	/3GeV)
Beam Power to 1 GeV Program	1 MW	
Beam Power to 3 GeV Program	2.87 MW 🖌	
Pulsed Linac		
Beam Energy	8.0 GeV	
Pulse Rate and Width	10 Hz, 4.3 msec	
Cycles to Main Injector/Recycler	6	
Particles per Cycle to MI/Recycler	2.7×10 ¹³	simultaneous
Linac output beam power	340 kW	
Beam Power to 8 GeV Program	170 kW 🔶	
Main Injector/Recycler		
Beam Energy	120 GeV (max)	
Cycle Time	1.2 sec	
Particles per Cycle	1.5×10 ¹⁴	
Beam Power to 120 GeV Program	2.4 MW	

S. Henderson, LINAC12, September 11, 2012

20

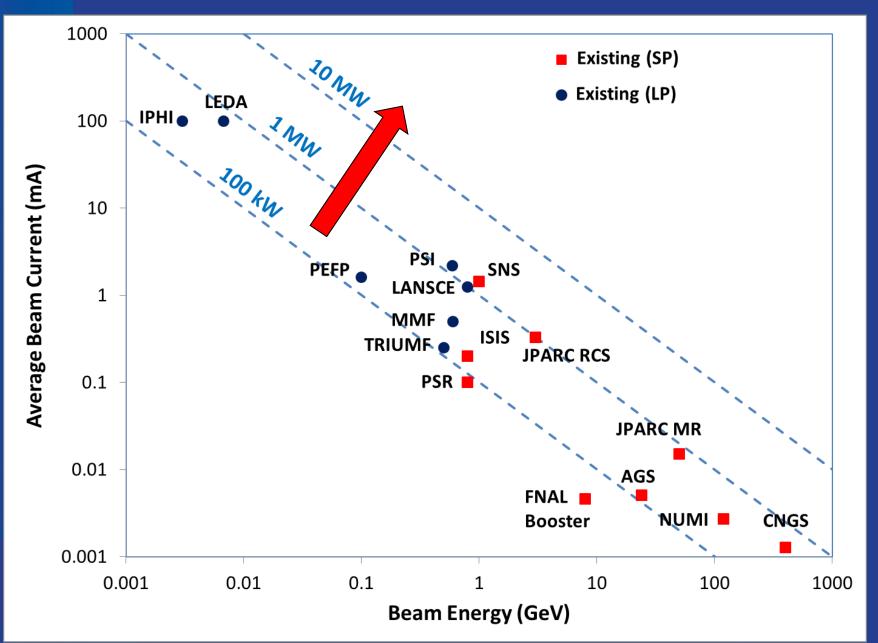
CW Linac		
Particle Type	Н-	
Beam Energy	3.0 GeV	
Average Current	2 mA/1mA (1 GeV	/3GeV)
Beam Power to 1 GeV Program	1 MW	
Beam Power to 3 GeV Program	2.87 MW	
Pulsed Linac		
Beam Energy	8.0 GeV	
Pulse Rate and Width	10 Hz, 4.3 msec	
Cycles to Main Injector/Recycler	6	
Particles per Cycle to MI/Recycler	2.7×10 ¹³	simultaneous
Linac output beam power	340 kW	
Beam Power to 8 GeV Program	170 kW 🔶	
Main Injector/Recycler		
Beam Energy	120 GeV (max)	
Cycle Time	1.2 sec	
Particles per Cycle	1.5×10 ¹⁴	
Beam Power to 120 GeV Program	2.4 MW	

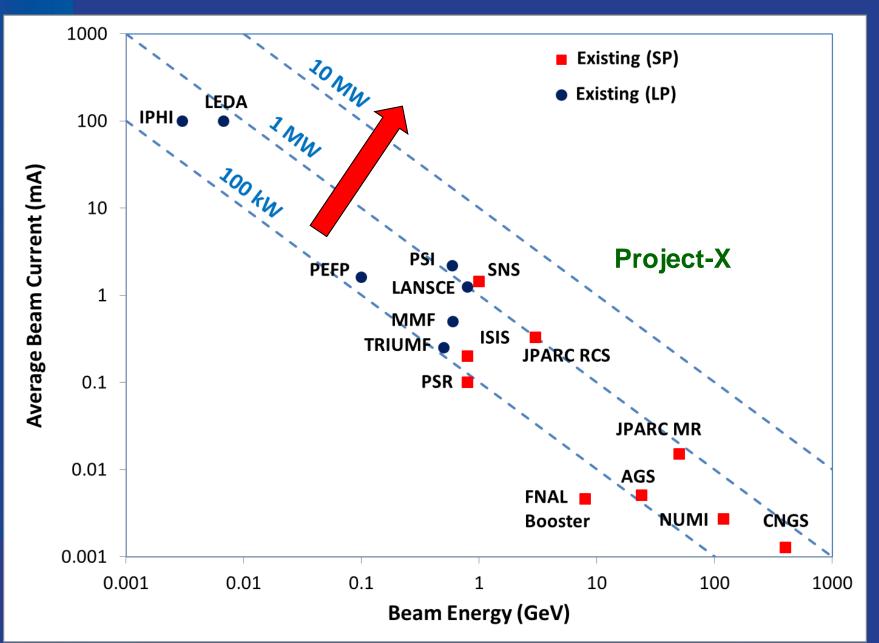
21 S. Henderson, LINAC12, September 11, 2012

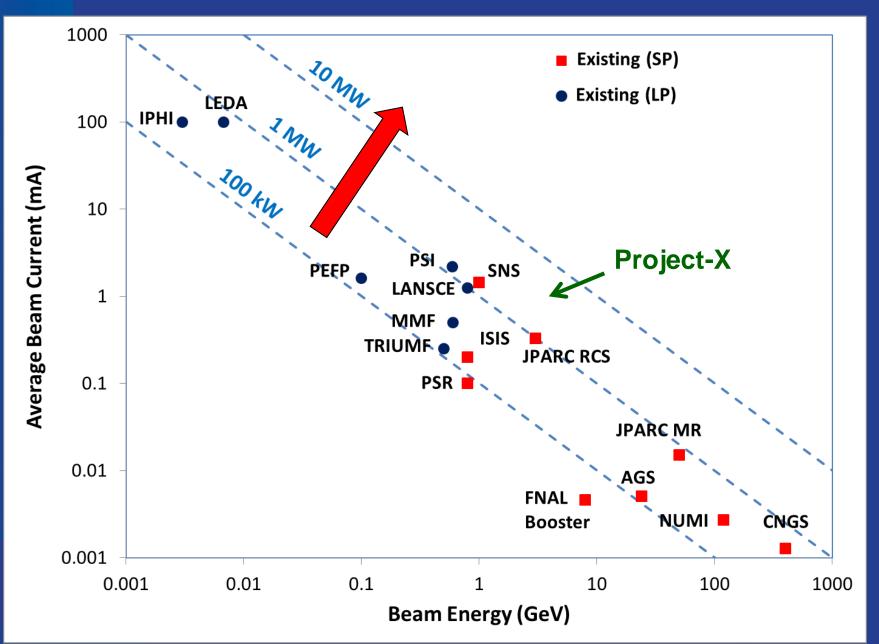
CW Linac	
Particle Type	H-
Beam Energy	3.0 GeV
Average Current	2 mA/1mA (1 GeV/3GeV)
Beam Power to 1 GeV Program	1 MW
Beam Power to 3 GeV Program	2.87 MW
Pulsed Linac	
Beam Energy	8.0 GeV
Pulse Rate and Width	10 Hz, 4.3 msec
Cycles to Main Injector/Recycler	6
Particles per Cycle to MI/Recycler	2.7×10 ¹³ simultaneous
Linac output beam power	340 kW
Beam Power to 8 GeV Program	170 kW
Main Injector/Recycler	
Beam Energy	120 GeV (max)
Cycle Time	1.2 sec
Particles per Cycle	1.5×10 ¹⁴
Beam Power to 120 GeV Program	2.4 MW

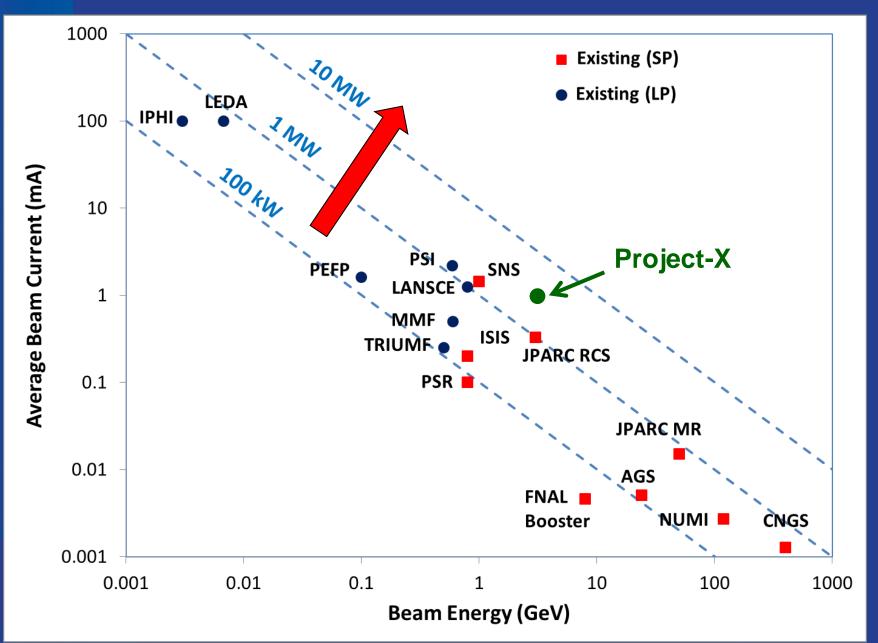
22 S. Henderson, LINAC12, September 11, 2012

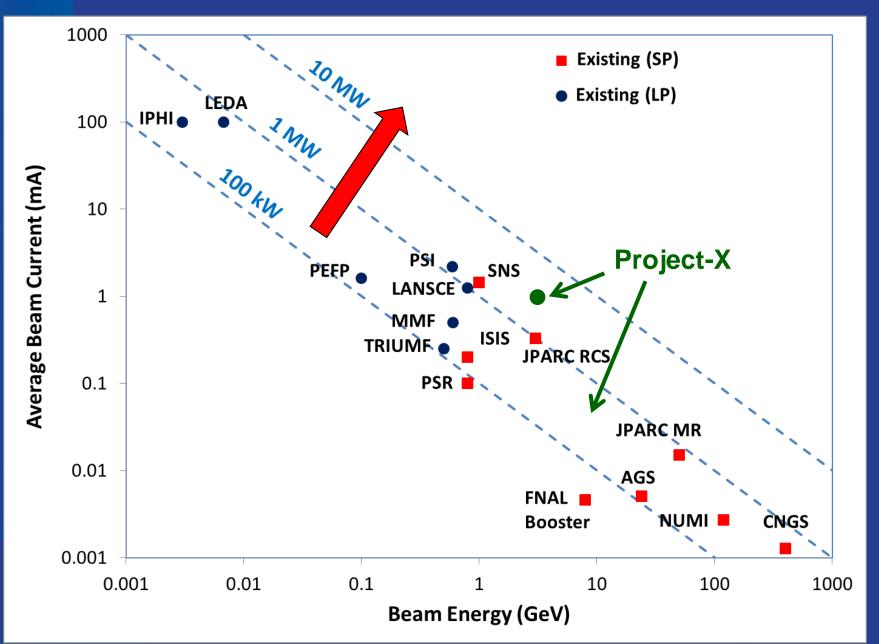
CW Linac	
Particle Type	H-
Beam Energy	3.0 GeV
Average Current	2 mA/1mA (1 GeV/3GeV)
Beam Power to 1 GeV Program	1 MW
Beam Power to 3 GeV Program	2.87 MW
Pulsed Linac	
Beam Energy	8.0 GeV
Pulse Rate and Width	10 Hz, 4.3 msec
Cycles to Main Injector/Recycler	6
Particles per Cycle to MI/Recycler	2.7×10 ¹³ simultaneous
Linac output beam power	340 kW
Beam Power to 8 GeV Program	170 kW
Main Injector/Recycler	
Beam Energy	120 GeV (max)
Cycle Time	1.2 sec
Particles per Cycle	1.5×10 ¹⁴
Beam Power to 120 GeV Program	2.4 MW

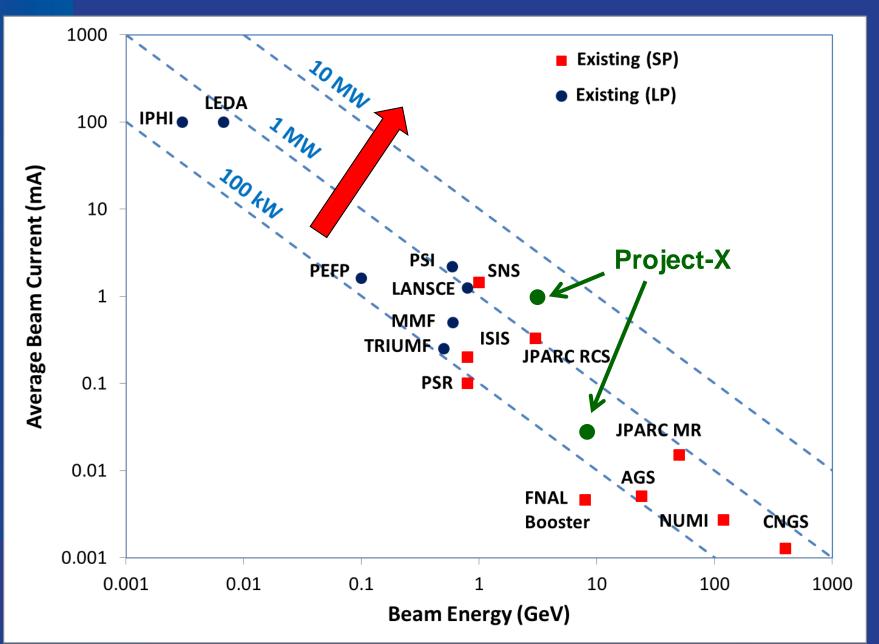

23

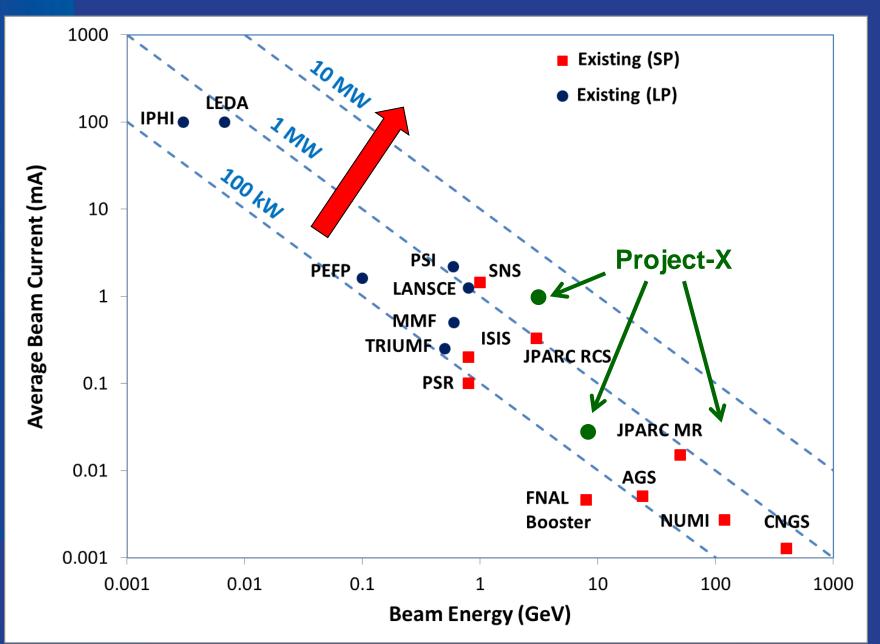


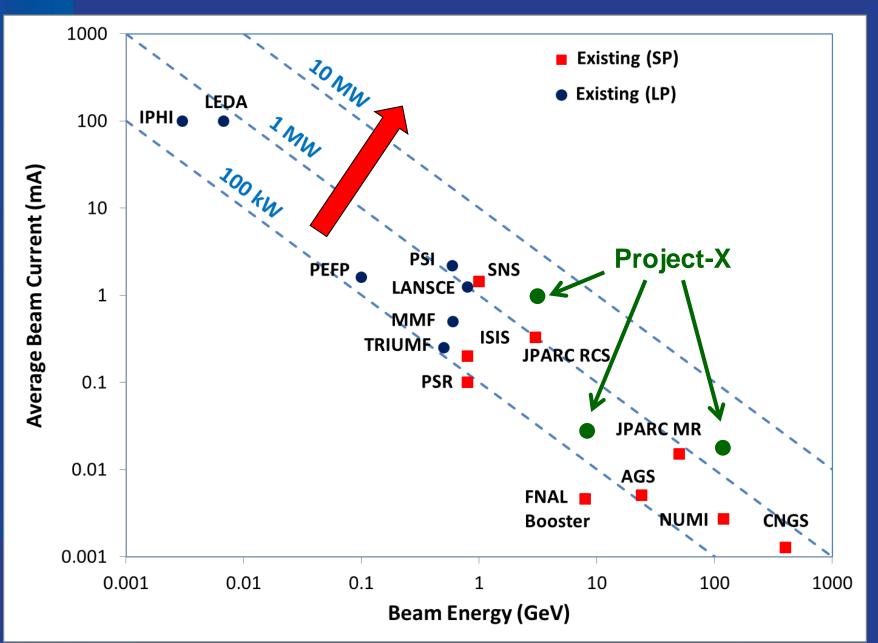

CW Linac	
Particle Type	H-
Beam Energy	3.0 GeV
Average Current	2 mA/1mA (1 GeV/3GeV)
Beam Power to 1 GeV Program	1 MW
Beam Power to 3 GeV Program	2.87 MW
Pulsed Linac	
Beam Energy	8.0 GeV
Pulse Rate and Width	10 Hz, 4.3 msec
Cycles to Main Injector/Recycler	6
Particles per Cycle to MI/Recycler	2.7×10 ¹³ simultaneous
Linac output beam power	340 kW
Beam Power to 8 GeV Program	170 kW
Main Injector/Recycler	
Beam Energy	120 GeV (max)
Cycle Time	1.2 sec
Particles per Cycle	1.5×10 ¹⁴
Beam Power to 120 GeV Program	2.4 MW

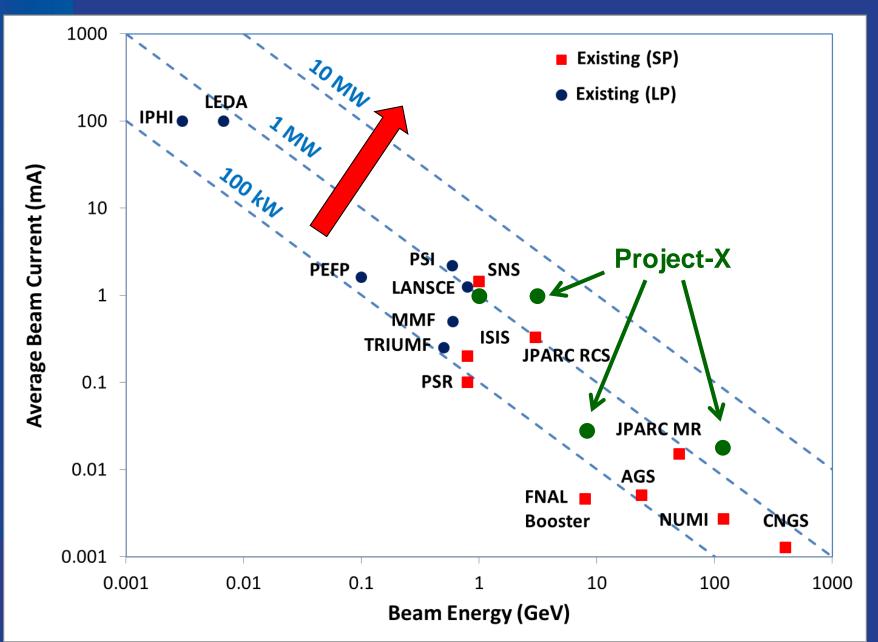

Fermilab

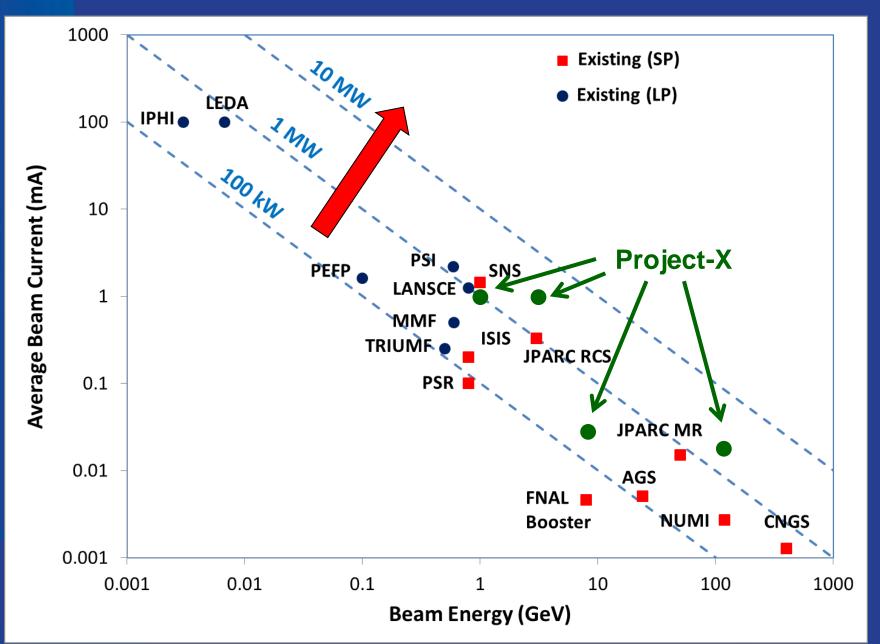






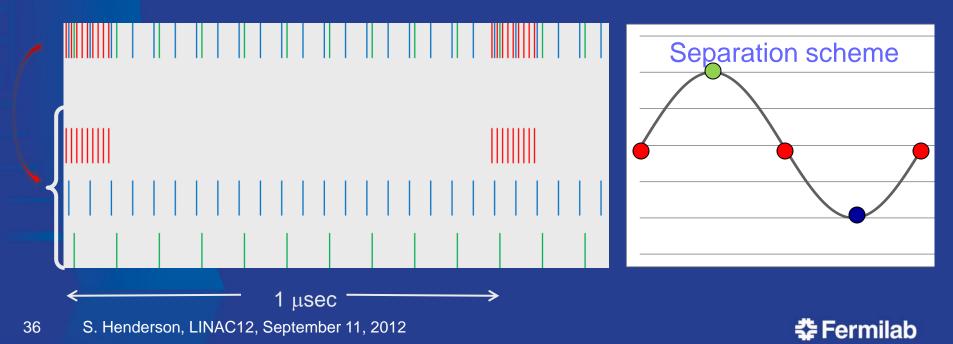






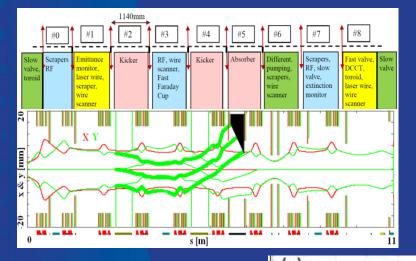
Key Challenges and Novel Approaches

- Operate multiple high-power programs simultaneously
 - Each program requires specific bunch formats, made possible with a beam Chopper system and RF deflector system
- Utilize SRF technology
 - Readily meets the CW requirement
 - Takes advantage of all benefits of SCRF vs. NCRF
- Front-end has many challenges:
 - CW RFQ of moderate average H- current
 - Challenging chopper system
 - Utilization of SRF structures after RFQ (vacuum, chopped beam handling, emittance/halo control)
- Accelerating and handling high power beams
 - High power beams require very careful control and understanding of emittance/halo growth
 - Each program requires high-power targetry development

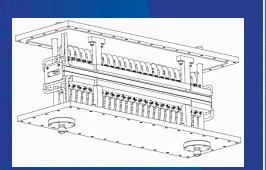

Project X Operating Scenario for 3 GeV CW Linac

Ion source and RFQ operate at 4.4 mA

77% of bunches are chopped @ 2.1 MeV \Rightarrow maintain 1 mA over 1 μ sec

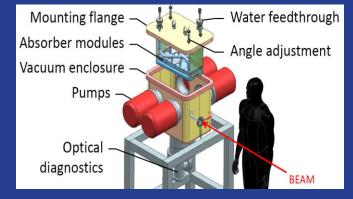

1 μsec period at 3 GeV

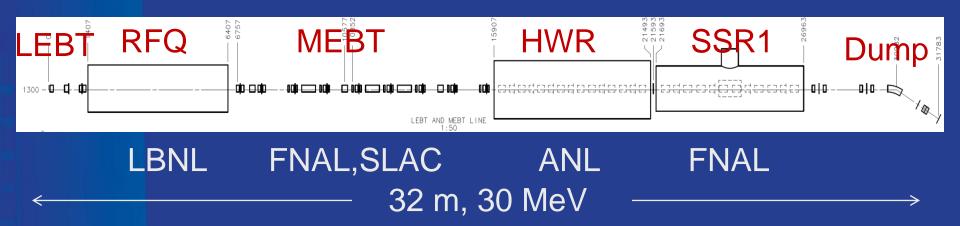
Kaon pulses (17e7) 20 MHz	1540 kW
Nuclear pulses (17e7) 10 MHz	770 kW
Muon pulses (17e7) 80 MHz, 100 nsec burst @ 1 MHz	700 kW



Project X MEBT Chopper

MEBT chopper system removes undesired bunches from a continuous train of bunches from the RFQ at 162.5 MHz


- Chopper employs two kickers (180-deg apart in betatron phase) and an absorber Each kicker is a 50-cm long, 16-mm gap slow structure (20 mm/ns). Each plate: ± 250 V pulse
- R&D on two types: 50 and 200 Ohm


(C) 151 Vpp Single Pulse out

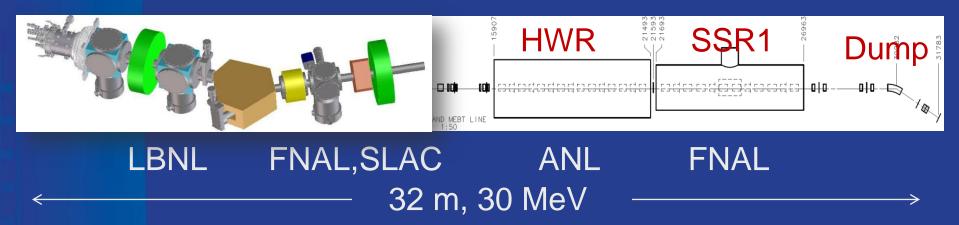
•

•

Mechanical schematic of a 50-Ohm kicker Test of a 150-W amplifier as a kicker driver: output signal for a single pulse MEBT absorber: TMZ alloy, 40 cm long. Requirements: 21 kW beam, ~2mm rms rad, 29 mrad grazing angle.

PXIE is the centerpiece of the Project X R&D program

- Integrated systems test for Project X front end components to validate the concept, thereby minimizing the primary technical risks within the Reference Design.
- Systems test goals


38

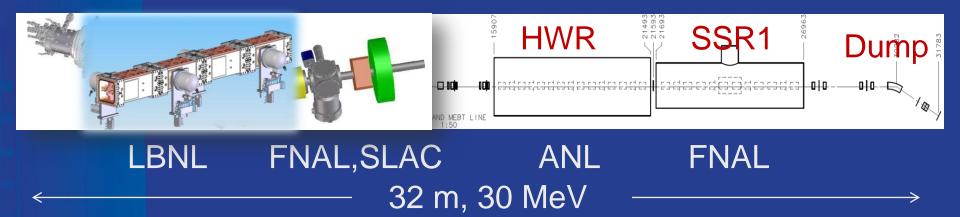
- Operate at full Project X design parameters: 1 mA average current with 80% chopping of beam delivered from RFQ
- Efficient acceleration with minimal emittance dilution through ~30 MeV

- Ion source lifetime
- LEBT pre-chopping
- Vacuum management in the LEBT/RFQ region
- Validation of chopper performance
- Emittance preservation and beam halo formation through the front end

- Effectiveness of MEBT beam absorber
- MEBT vacuum management
- Operation of HWR in close proximity to 10 kW absorber
- Operation of SSR with beam
- Kicker extinction

PXIE is the centerpiece of the Project X R&D program

- Integrated systems test for Project X front end components to validate the concept, thereby minimizing the primary technical risks within the Reference Design.
- Systems test goals


39

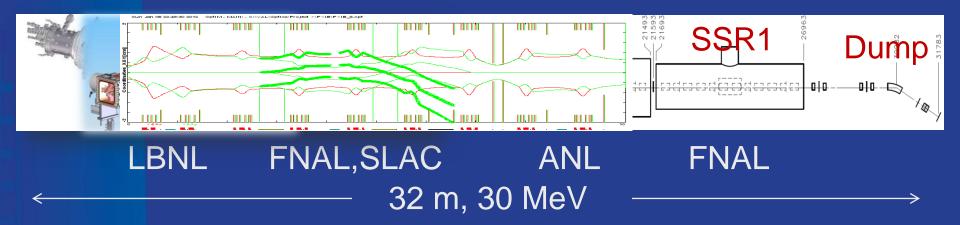
- Operate at full Project X design parameters: 1 mA average current with 80% chopping of beam delivered from RFQ
- Efficient acceleration with minimal emittance dilution through ~30 MeV

- Ion source lifetime
- LEBT pre-chopping
- Vacuum management in the LEBT/RFQ region
- Validation of chopper performance
- Emittance preservation and beam halo formation through the front end

- Effectiveness of MEBT beam absorber
- MEBT vacuum management
- Operation of HWR in close proximity to 10 kW absorber
- Operation of SSR with beam
- Kicker extinction

PXIE is the centerpiece of the Project X R&D program

- Integrated systems test for Project X front end components to validate the concept, thereby minimizing the primary technical risks within the Reference Design.
- Systems test goals


40

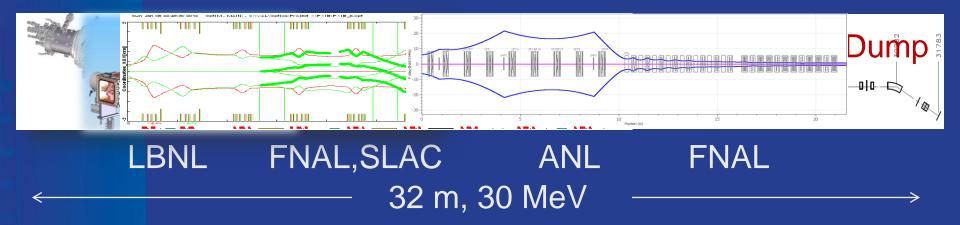
- Operate at full Project X design parameters: 1 mA average current with 80% chopping of beam delivered from RFQ
- Efficient acceleration with minimal emittance dilution through ~30 MeV

- Ion source lifetime
- LEBT pre-chopping
- Vacuum management in the LEBT/RFQ region
- Validation of chopper performance
- Emittance preservation and beam halo formation through the front end

- Effectiveness of MEBT beam absorber
- MEBT vacuum management
- Operation of HWR in close proximity to 10 kW absorber
- Operation of SSR with beam
- Kicker extinction

PXIE is the centerpiece of the Project X R&D program

- Integrated systems test for Project X front end components to validate the concept, thereby minimizing the primary technical risks within the Reference Design.
- Systems test goals


41

- Operate at full Project X design parameters: 1 mA average current with 80% chopping of beam delivered from RFQ
- Efficient acceleration with minimal emittance dilution through ~30 MeV

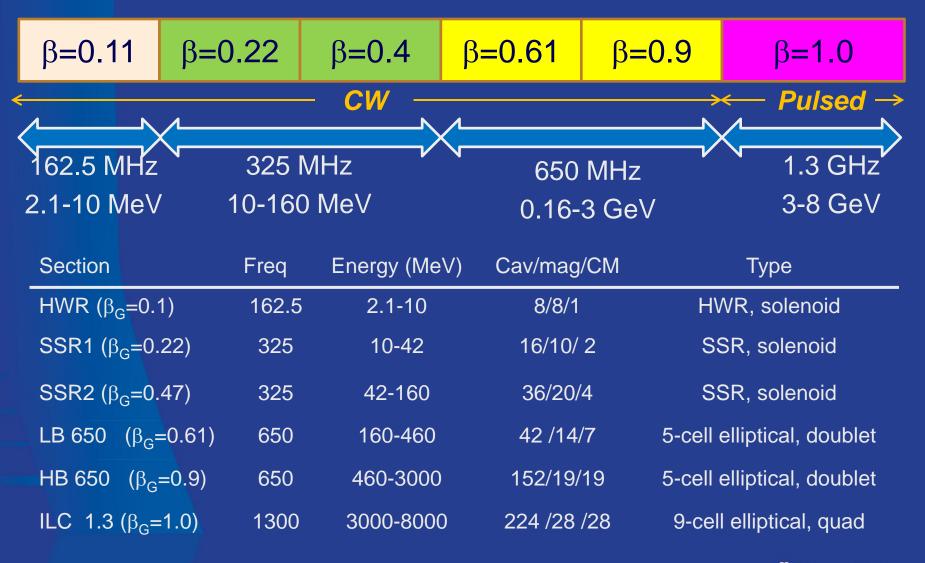
- Ion source lifetime
- LEBT pre-chopping
- Vacuum management in the LEBT/RFQ region
- Validation of chopper performance
- Emittance preservation and beam halo formation through the front end

- Effectiveness of MEBT beam absorber
- MEBT vacuum management
- Operation of HWR in close proximity to 10 kW absorber
- Operation of SSR with beam
- Kicker extinction

PXIE is the centerpiece of the Project X R&D program

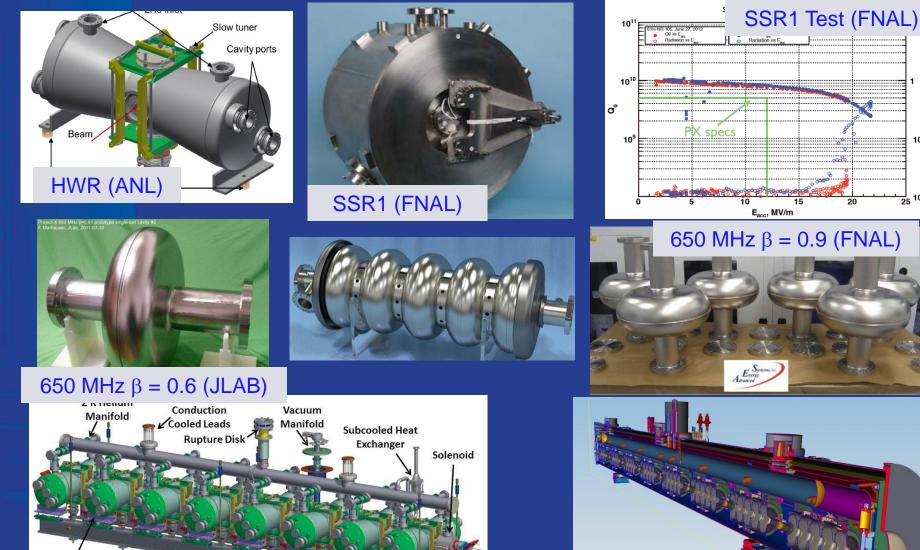
- Integrated systems test for Project X front end components to validate the concept, thereby minimizing the primary technical risks within the Reference Design.
- Systems test goals

42


- Operate at full Project X design parameters: 1 mA average current with 80% chopping of beam delivered from RFQ
- Efficient acceleration with minimal emittance dilution through ~30 MeV

- Ion source lifetime
- LEBT pre-chopping
- Vacuum management in the LEBT/RFQ region
- Validation of chopper performance
- Emittance preservation and beam halo formation through the front end

- Effectiveness of MEBT beam absorber
- MEBT vacuum management
- Operation of HWR in close proximity to 10 kW absorber
- Operation of SSR with beam
- Kicker extinction


Superconducting RF Technology Map

🛟 Fermilab

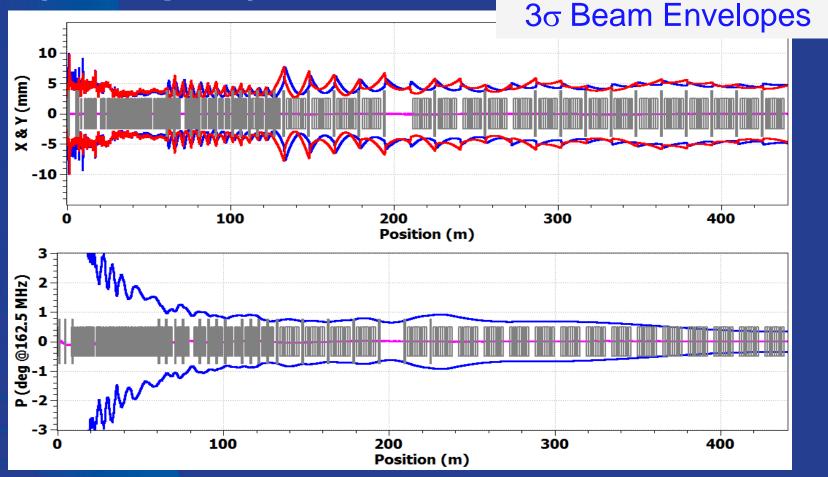
43 S. Henderson, LINAC12, September 11, 2012

SRF Development for Project X (FNAL, **ANL, JLAB, Indian Institutions)**

HWR (ANL)

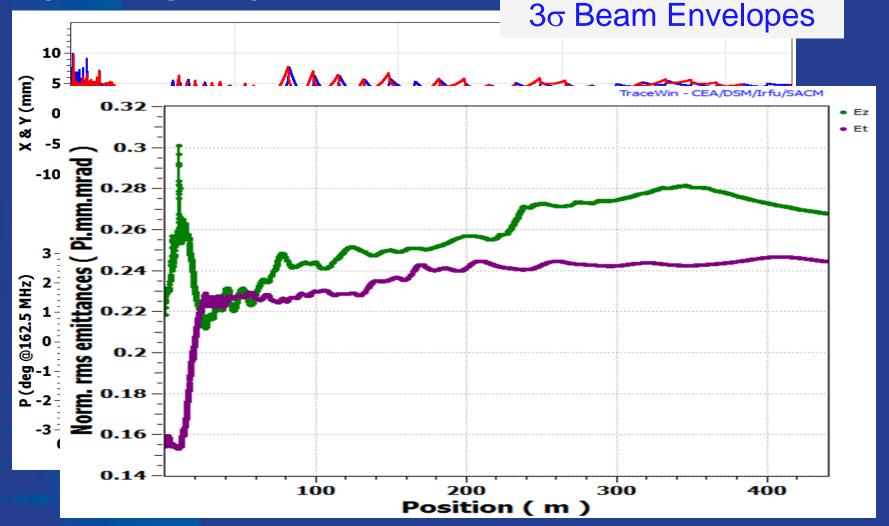
162.5 MHz

HWR

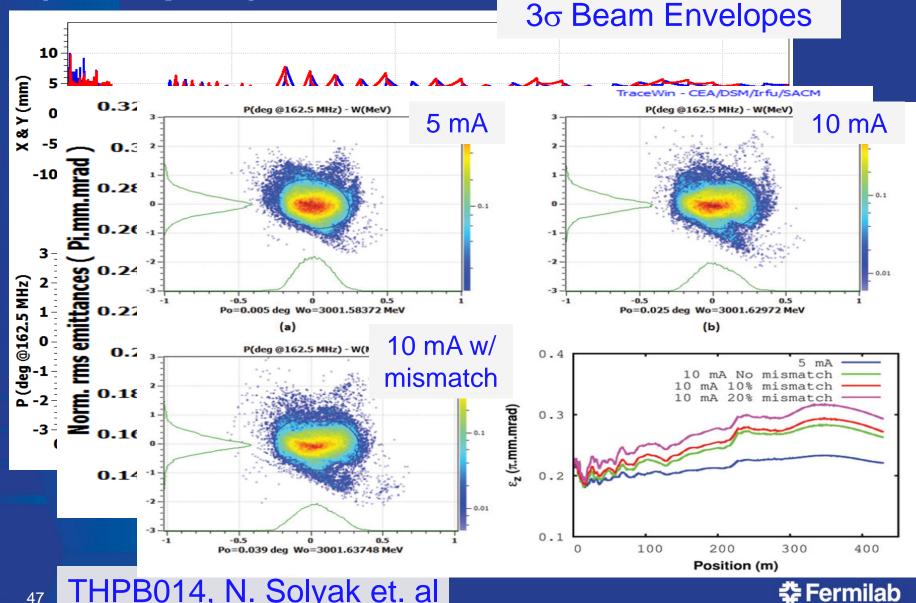

Ti Strongback

650 MHz CM (FNAL)

0 ₁ Radiation, mR/h


25 10-2

3 GeV Linac Beam Dynamics Studies (Examples)


45 THPB014, N. Solyak et. al

3 GeV Linac Beam Dynamics Studies (Examples)

⁴⁶ THPB014, N. Solyak et. al

3 GeV Linac Beam Dynamics Studies (Examples)

THPB014, N. Solyak et. al

The Project-X Project

- Cost estimate for full Project-X Reference Design is approximately \$1.8B in U.S. accounting
- We are working toward construction in the latter half of the decade, focusing now on critical R&D
- We are formulating a staged construction approach
 - With significant physics opportunities at each stage
 - Cost of each stage substantially <\$1B
 - Achieve full Reference Design capabilities with the final stage

Output Power from the	Fermilab complex w/ planned Upgrades	Stage-1: 1 GeV CW Linac driving Booster	Stage-2: Upgrade to 3 GeV CW Linac	Stage-3: Project X RDR				
Main Injector (120 GeV)	700 kW	1200 kW	1200 kW	2450 kW				
Booster (8 GeV)	80 kW	120 kW	160 kW	N/A				
1 GeV CW Linac	N/A	1000 kW	1000 kW	1000 kW				
3 GeV CW Linac	N/A	N/A	3000 kW	3000 kW				
8 GeV Pulsed Linac	N/A	N/A	N/A	340 kW				
S. Henderson, LINAC12, September 11, 2012								

Conclusion

- The Project X Reference Design represents a unique facility which will form the basis for a world-leading Intensity Frontier program for decades
 - Platform for future development of a Neutrino Factory or Muon Collider
- We are considering a staged construction approach
 - With first stage based on a 1 GeV CW linac feeding the existing Booster
- The R&D for Project X is focused on SRF structure and cyomodule development, and on demonstrating the challenging requirements of the front-end in the PXIE
- Our R&D program supports a staged construction start for Project X as early as 2017.

To Learn More...

MOPB078, A. Grassellino et. al. "High Q Studies for Nb Cavities: Heat Treatments and NbN R&D at FNAL"

MOPB095, A.V. Shemyakin, "Design of MEBT for the Project X Injector Experiment at Fermilab"

TUPB046, P.N. Ostroumov et. al., "R&D Towards CW Ion Linacs at ANL"

TUPB054, A. Sukhanov et. al., "Coherent Effects of High Current Beam in Project X Linac"

TUPB062, G.I. Cancelo et. al., "A Conceptual Design of the Low Level RF Control System for Fermilab's Project X 3 to 8 GeV Pulsed Linac

TUPB067, Z.A. Conway et. al., "Development of a Superconducting Half-Wave Resonator for PXIE

TUPB068, Z.A. Conway et. al., "Cryomodule Designs for Superconducting Half-wave Resonators THPB015, P. Varghese, "Performance of Ferrite Vector Modulator Control Loops in the LLRF System of the Fermilab HINS 6-Cavity Test"

THPB003, S.C. Joshi et. al., "R&D Activities on High Intensity Superconducting Proton Linac at RRCAT"

THPB014, N. Solyak et. al., "Lattice Design and Beam Dynamics Studies for Project X"

THPB016, M. Popovic, "Concept: Low Energy, Low Intensity NF from Projet X"

THPB017, M. Popovic, "A Concept: 8 GeV CW Linac, Staged Approach"

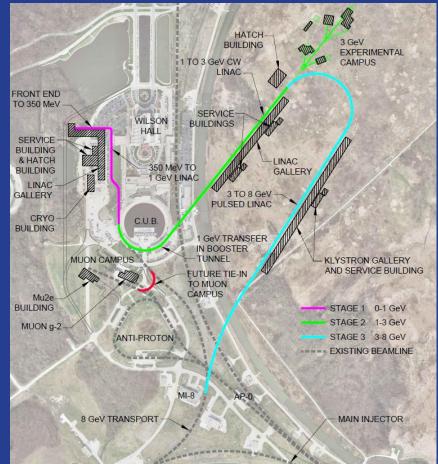
THPB018, V.A. Lebedev, "Project X and its Physics Program"

THPB019, V.A. Lebedev et. al., "Progress with PXIE MEBT Chopper"

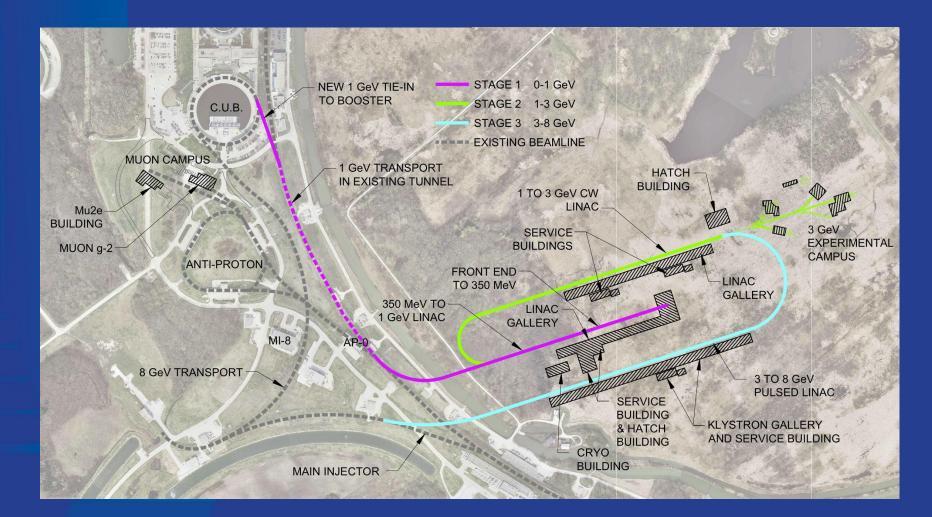
THPB054, G.V. Romanov et. al., "EM Design Features of CW RFQ for the Project X Injector Facility

THPB055, J.-F. Ostoguy, "Numerical Simulations of Project X/PXIE RFQ"

50 S. Henderson, LINAC12, September 11, 2012


Siting Options

- Most straight forward implementation is via the Reference Design siting
- Alternative based on "parking lot" linac to west of existing linac enclosure
 - ~\$70M savings @ Stage 1
- Other alternatives under development. Issues:
 - Cost minimization in initial stage
 - Implementation of Stages 2-4
 - Connections to Muon Campus



Siting Options

- Most straight forward implementation is via the Reference Design siting
- Alternative based on "parking lot" linac to west of existing linac enclosure
 - ~\$70M savings @ Stage 1
- Other alternatives under development. Issues:
 - Cost minimization in initial stage
 - Implementation of Stages 2-4
 - Connections to Muon Campus

Siting Options

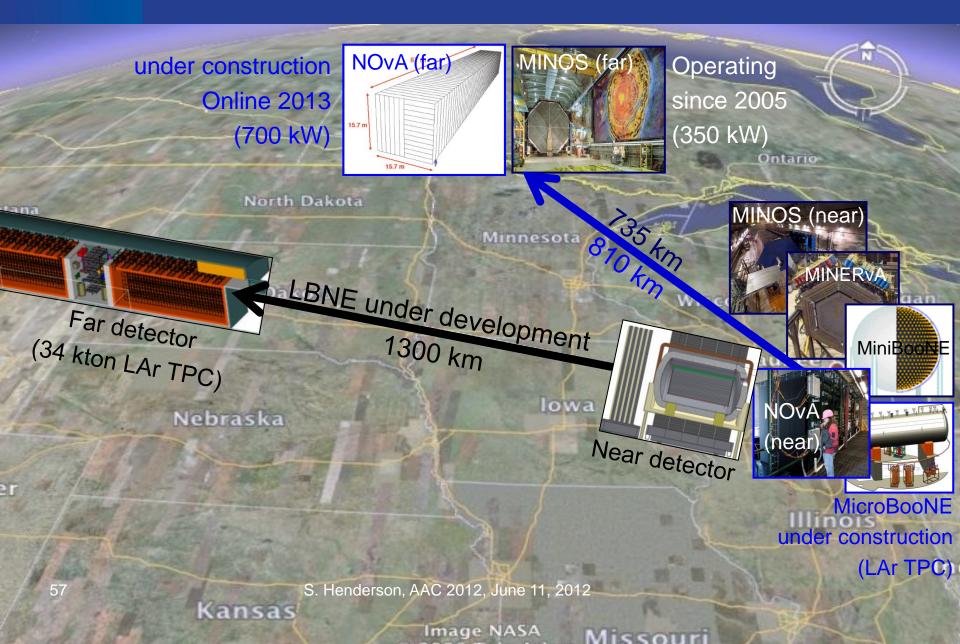
‡ Fermilab

Staged Physics Program

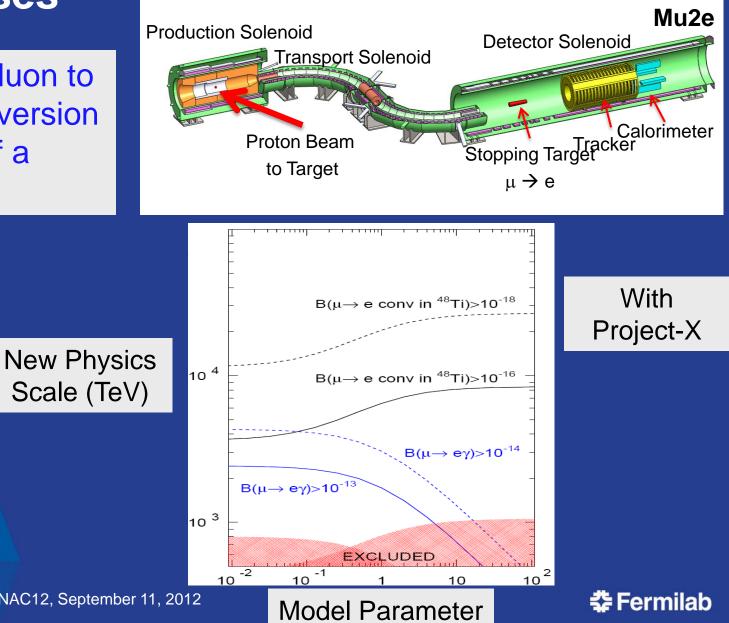
		Project X Campaign>								
Program:	NOvA + Proton Improvement Plan	Stage-1: 1 GeV CW Linac driving Booster & Muon, n/edm programs	Stage-2: Upgrade to 3 GeV CW Linac	Stage-3: Project X RDR	Stage-4: Beyond RDR: 8 GeV power upgrade to 4MW					
MI neutrinos	470-700 kW**	515-1200 kW**	1200 kW	2450 kW	2450-4000 kW					
8 GeV Neutrinos	15 kW + 0-50 kW**	0-42 kW* + 0-90 kW**	0-84 kW*	0-172 kW*	3000 kW					
8 GeV Muon program e.g, (g-2), Mu2e-1	20 kW	0-20 kW*	0-20 kW*	0-172 kW*	1000 kW					
1-3 GeV Muon program, e.g. Mu2e-2		80 kW	1000 kW	1000 kW	1000 kW					
Kaon Program	0-30 kW** (<30% df from MI)	0-75 kW** (<45% df from MI)	1100 kW	1870 kW	1870 kW					
Nuclear edm ISOL program	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW					
Ultra-cold neutron program	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW					
Nuclear technology applications	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW					
# Programs:	4	8	8	8	8					
Total max power:	735 kW	2222 kW	4284 kW	6492 kW	11870kW					

** Operating point in range is depends on MI injector slow-spill duty factor (df) for kaon program.

‡ Fermilab


Intensity Frontier: Neutrino Sector

Intensity Frontier: Neutrino Sector

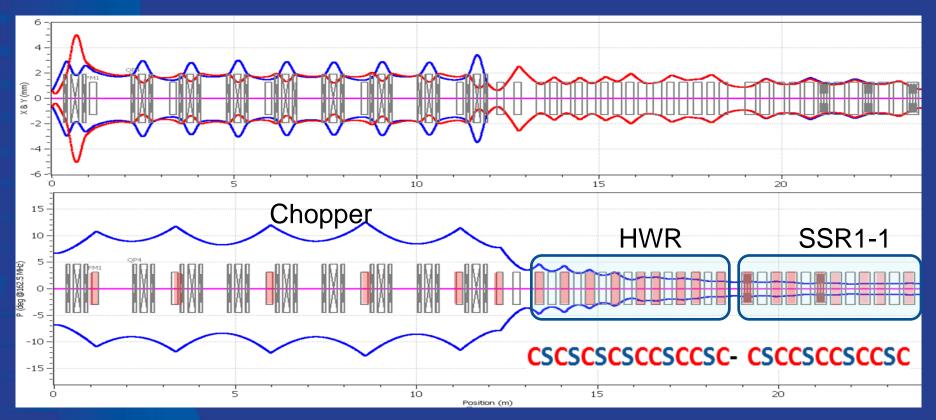


Intensity Frontier: Neutrino Sector

Intensity Frontier: Precision and Rare Processes

Search for Muon to electron conversion in the field of a nucleus

Collaboration Activities

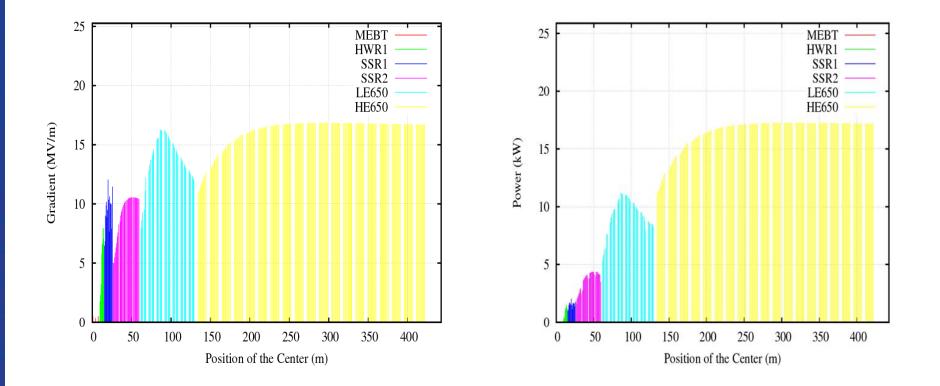

Two MOUs covering the RD&D Phase

<u>National</u>		<u>IIFC</u>
ANL	ORNL/SNS	BARC/Mumbai
BNL	PNNL	IUAC/Delhi
Cornell	TJNAF	RRCAT/Indore
Fermilab	SLAC	VECC/Kolkata
LBNL	ILC/ART	
MSU		

- Informal collaboration/contacts with CERN/SPL, ESS China/ADS, UK, Korea/KoRIA
- Weekly Friday meeting: https://indico.fnal.gov/categoryDisplay.py?categId=168
 - Collaborator participation via webex
 - Meeting notes posted
- Semi-annual Collaboration meetings

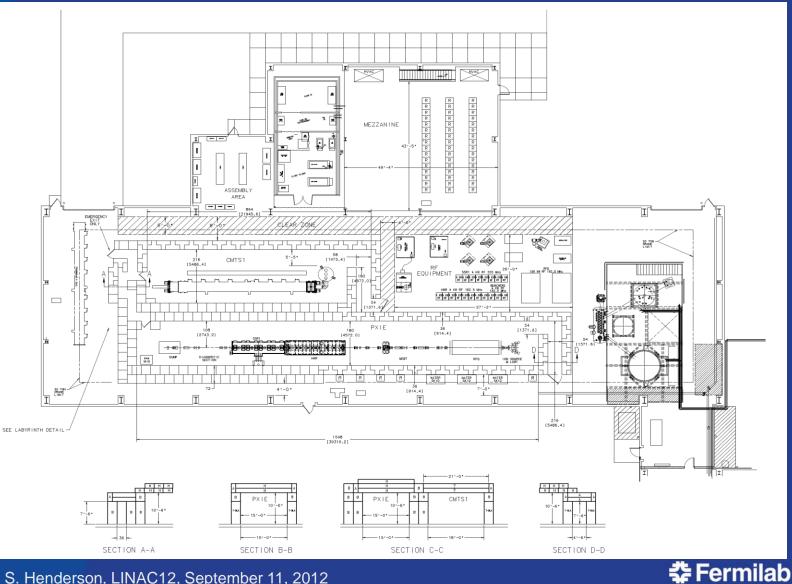
PXIE Beam Envelopes

Emittances: 0.14, 0.14, 0.217 π·mm·mrad; Current 5 mA@162.5 MHz; Energy: 2.1 MeV – 10.8 MeV – 22.1 MeV


Fermilab

SRF Acceleration Parameters

Energy Gain


Beam Power

61

PXIE @ CMTF

S. Henderson, LINAC12, September 11, 2012

62

- Scope
 - 1 GeV CW linac injecting into upgraded Booster
 - Connection to Muon Campus
 - Possible new EDM/Neutron campus (1 GeV)
- Performance
 - Main Injector: up to 1.2 MW at 120 GeV, 0.9 MW at 60 GeV
 - Muon Campus: >80 kW to Mu2e @ 1GeV
 - EDM/Neutron Campus: up to 900 kW @ 1 GeV
 - 8 GeV Program: up to 42 kW
- Utilization of the existing complex
 - Booster, Main Injector and Recycler (with PIP)
 - LBNE target system
 - Muon Campus
 - 400 MeV Linac retired eliminates major reliability risk

- Scope
 - Upgrade 1 GeV linac to 2 mA, still injecting into Booster
 - 1-3 GeV CW linac
 - 20 Hz Booster upgrade
 - 3 GeV Campus
- Performance
 - Main Injector: up to 1.2 MW at 60-120 GeV
 - 3 GeV Campus: 3 MW
 - EDM/Neutron Campus: 1 MW @ 1 GeV
 - 8 GeV program: up to 84 kW
- Utilization of the existing complex
 - Booster, Main Injector and Recycler (with PIP)
 - LBNE target system

- Scope
 - 3-8 GeV pulsed linac
 - Main Injector Recycler upgrades
 - Short baseline neutrino facility/experiment
- Performance
 - Main Injector: 2.4 MW at 60-120 GeV
 - 3 GeV Campus: 2.9 MW
 - EDM/Neutron Campus: 1 MW @ 1 GeV
 - 8 GeV program: up to 170 kW
- Utilization of the existing complex
 - Main Injector and Recycler
 - LBNE beamline/target
 - 8 GeV Booster retired eliminates major reliability risk

- Scope beyond the Reference Design
 - Current upgrade of CW and pulsed linac: 5 mA x 10% DF
 - Main Injector/Recycler upgrades
 - LBNE target upgrade
 - Step toward a NF or MC
- Performance
 - Main Injector: 4 MW at 60-120 GeV
 - 3 GeV Campus: 2.7 MW
 - EDM/Neutron Campus: 1 MW @t 1 GeV
 - 8 GeV program: 3-4 MW
 - . (Requires an accumulator ring for low duty factor)
- Utilization of the existing complex
 - Main Injector and Recycler
 - LBNE beamline/target

Performance by Stage

projectx-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1061

DRAFT 6-6-12

Long Baseline Neutrino Program

(Main Injector Fast Spill)	Stage 1		S	tage 2	S	tage 3	
	<u>120</u>	60	120	60	120	60	GeV
Maximum Beam Power* Protons per pulse	1200 7.5×10 ¹³	900 7.5×10 ¹³	1200 7.5×10 ¹³	1200 7.5×10 ¹³	2450 1.5×10 ¹⁴	2450 1.5×10 ¹⁴	kW
Pulse length	9.5	9.5	9.5	9.5	9.5	9.5	µsec
Number of bunches	504	504	504	504	504	504	
Bunch spacing	18.9	18.9	18.9	18.9	18.9	18.9	nsec
Bunch length (FWHM)	2	2	2	2	2	2	nsec
Pulse repetition period	1.2	0.8	1.2	0.6	1.2	0.6	sec

<u>8 GeV Program</u>	Stage	1 (Booster)	Stage 2	nge 2 (Booster) Stage 3 (Pulsed 1		<u> (Pulsed Lii</u>	Linac)	
	<u>120</u>	60	120	60	120	60	GeV	
Minimum Beam Power*	42	0	84	0	172	0	kW	
Protons per pulse	6.6×10^{12}	6.6×10^{12}	6.6×10^{12}	6.6×10^{12}	2.7×10^{13}	2.7×10^{13}		
Pulse length	1.6	1.6	1.6	1.6	4300	4300	µsec	
Number of bunches	81	81	81	81	140,000	140,000		
Bunch spacing	18.9	18.9	18.9	18.9	30	30	nsec	
Bunch length (FWHM)	2	2	2	2	.04	.04	nsec	
Pulse repetition rate	15	15	20	20	10	10	Hz	

S. Henderson, LINAC12, September 11, 2012

67

Performance by Stage

projectx-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1061

DRAFT 6-6-12

<u>3 GeV Program</u>	Stage 1			Stage 2		Stage 3	
	120	60	120	60	120	60	GeV
Beam Power	NA	NA	3000	3000	2870	2870	kW
Protons per second	NA	NA	6.2×10 ¹⁵	6.2×10 ¹⁵	6.2×10 ¹⁵	6.2×10 ¹⁵	
Pulse length	NA	NA	CW	CW	CW	CW	μsec
Bunch spacing**	NA	NA	Prog	rammable	Prog	rammable	nsec
Bunch length (FWHM)	NA	NA	.04	.04	.04	.04	nsec

<u>1 GeV Program</u>	Stage 1			Stage 2		Stage 3	
	<u>120</u>	60	120	60	120	60	GeV
Beam Power	984	984	980	980	1000	1000	kW
Protons per second	6.2×10^{15}	6.2×10 ¹⁵					
Pulse length	CW	CW	CW	CW	CW	CW	µsec
Bunch spacing**	Prog	grammable	Prog	rammable	Prog	rammable	nsec
Bunch length (FWHM)	.04	.04	.04	.04	.04	.04	nsec

‡ Fermilab