

STATUS OF THE IFMIF-EVEDA 9 MeV 125 mA deuteron LINAC Linear IFMIF Prototype Accelerator (LIPAC)

Alban Mosnier

IFMIF

LIPAC

Alban Mosnier

IFMIF objectives

• aims at generating materials irradiation test data for DEMO and future fusion power plants

 based on an accelerator-driven, D-Li neutron source to produce high energy neutrons at sufficient intensity and irradiation volume

Neutron Energy (MeV)

Objectives

- Validate the IFMIF accelerators
 (up to 1st accel module = the most critical portion)
- Qualify all associated technologies
- Characterize the beam by means of specific diagnostics

Main Tasks

- Design and manufacturing of all components
- Integration of the whole Linac within the building and auxiliaries
- Commissioning in pulsed mode (H+, D+)
- Ultimate goal: Operation in CW of a 125 mA D⁺ beam at 9 MeV

The engineering validation activities conducted since mid-2007 under the framework of the Broader Approach Agreement and shared as follows:

- Accelerator components designed, manufactured and tested by European institutions (CEA, CIEMAT, INFN, SCK-CEN)
 - Injector (CEA)
 - Radio Frequency Quadrupole (INFN)
 - Medium-High Energy Beam Transport lines & Beam Dump (CIEMAT)
 - Superconducting RF Linac (CEA + CIEMAT)
 - 175 MHz RF Systems (CIEMAT)
 - Beam Instrumentation (CEA + CIEMAT)
- Conventional facilities (building and auxiliaries), Central Control System, RFQ couplers provided by Japan (JAEA)
- Design integration & interface management coordinated by F4E
- Coordination & integration on site by the Project Team hosted in Rokkasho

IFMIF

Conventional Facilities Accelerator system

Alban Mosnier

IFMIF

LIPAC

accelerator components mockup

Alban Mosnier

Injector (Ion source, LEBT) beam dynamics IFMIF

R. Gobin's talk on Friday CEA

Extraction: 175 mA total (140 mA D⁺, 26 mA D₂⁺, 9 mA D₃⁺)

R(mm) 40 30 20 10 0 -10 -20 -30 -40 200 0 120 Plasma Intermediate Ground 1 e-screening Ground 2 electrode electrode electrode electrode electrode 100 kV 57 kV -2.8 kV -2.8 kV 0 kV Φ12mm Φ12mm Φ12mm Φ14mm Φ14mm

ECR ion source

LEBT no beam loss, optimum injection into RFQ

New 5-electrode extraction system after sparking issues at 100 kV

- \Rightarrow high level of space charge compensation all along the LEBT line to meet the requirements: emittance (0.25 π mm mrad) + RFQ matching
- injection of a specific gas in the line (krypton 4.10^{-5} hPa)
- HV electrode in front of the RFQ to trap the electrons (e-repeller)

Injector at CEA-Saclay

View-port after 1st solenoid

Alban Mosnier

Ion source on HV platform

- **Beam Intensity**: Large ACCT (Φ 178 mm) at the RFQ entrance with specific magnetic shielding
- Beam Profile and species fraction (Doppler shift method): use of rad-hard CID cameras and CCD camera outside the vault with fiberscope
- Emittance: Allison scanner to sustain 17 kW beam power
- Space charge compensation: 4 Grid Analyzer to measure the energy of secondary ions or electrons repelled out of the beam

Alban Mosnier

Need of pulsed mode with sharp rise/fall times (to limit transient current which would be lost downstream) with beam perfectly matched to the RFQ input conditions all along its duration

But **ECR ion source**: not able to produce such beam pulses **RF cutting technique in the RFQ:** could jeopardize the RFQ operation

\Rightarrow electrostatic chopper located in the Injector LEBT

(between the 2 solenoids)

In addition, as a chopper is able to produce short pulses <100 μs this option enables the use of interceptive diags

Injector beam tests

First pulsed H+ beam in May 2011
 First test campaign: pulsed beams 150 mA ,100 kV or continuous beams 100 mA, 75 kV

- First pulsed D+ beam in May 2012 (125 mA, 100 kV, 1%)
- New 5-electrode extraction system installed in September Test campaign starts again at mid-September for completion of the optimization and emittance measurement: ion source plasma, krypton pressure, solenoid setting, ...
- Electrostatic chopper in-between the two solenoids to enable the LIPAc operation with short pulses of sharp rise/fall times Tests of chopper (w/o beam) in September 2012
- Injector delivery at Rokkasho planned in March 2013

RFQ design

Main parameters selected

 Increasing voltage following an analytic law

IFMIF

- ✓ Strong focusing (B=7) to keep the tune depression > 0.4 for better control of space charge
- Min. beam loss & main resonances avoided in the accelerator section

This design allowed to obtain a good transmission with good margin

 ✓ But a lower focusing parameter B at the RFQ entrance will further facilitate beam injection from the LEBT

A low-B RFQ studied and adopted

✓ Studies of the transmission of the couple LEBT+RFQ show a more comfortable tunable range

Sensitivity to mismatch: scan of solenoid fields

RFQ beam dynamics

IFMIF

INFN

Cooling: ~ 600 kW RF power removed by means of 28 channels longitudinally drilled along the RFQ modules (water velocity ~3 m/s)

Cooling water channels

Cooling system (4 independent circuits) used for frequency tuning (\pm 100kHz) and field profile control

Full scale Al mockup to validate tuning procedure & mode stabilization by means of beadpull measurements

IFMIF

technological prototype machined at INFN and local industries, brazed at CERN

2 prototypes scale $\frac{1}{2}$ brazed in 1 single step

Vacuum ports

Vanes

Alban Mosnier

RFQ fabrication and tests

- **High Energy super module** (6 modules homogenous aperture) rough-machining by INFN (electric discharge machining) final machining and brazing by Indusry
- Intermediate Energy super module (6 modules z-dependent aperture) fully machined and brazed by INFN
- Low Energy super module same procedure as High Energy modules

module #16 (High Energy SM) machined & brazed

First module: 100 μ m max deformation measured still acceptable but at the limit of the specification might be corrected for the next modules by using

- appropriate annealing cycle
- improved fixation tooling

3 modules (plus RF plug) completed in Nov 2012 for high power tests, planned at the beginning of 2013 at INFN-Legnaro.

Alban Mosnier

IFMIF

MEBT design & beam dynamics

very compact ~ 2 m, many components

- 5 quadrupoles & steering coils
- 2 bunchers, 2 movable scrapers
- BPMs (in the center of quads)
- turbomolecular pumps on bunchers (1300l/s /buncher)

Scrapers: to clean the beam from transverse halo and off-momentum particles (non-accelerated in the RFQ) before the SRF Linac

line and the second

Position (m)

designed for 500 W beam power deposition

beam dynamics prediction < 10 W

H-plane

V-plane

Alban Mosnier

scraper 1

Bunchers: 5-gap IH structure

- Voltage EoLT = 350 kV
- Cavity length < 350 mm
- CW & pulsed mode operation

Buncher: prototype under fabrication, power tests planned at mid-2013 **Quadrupole**: prototype completed and validated on a magnetic test bench **Scraper**: manufacturing completed

IFMIF

Tuning system Coaxial coupler SC magnet (6 T) **Steerers and BPM**

Uncommon procedure:

- 1. Match beam rms envelope, then
- 2. Minimise radial beam extension
- → "Halo matching" instead of "Envelope matching"

Specifications

8 s.c. Half Wave Resonators

- low- β HWRs = 0.094
- working temperature 4.4 K
- Accelerating field ~ 4.5 MV/m

8 RF power couplers

- operating mode CW,
- RF power: 200 kW (70 kW LIPAc)

8 Superconducting Solenoid Packages

- focusing solenoid
- H&V steerers
- cryogenic BPM

 Cryostat with all necessary equipment (supports, cryogenic distribution, alignment, vacuum, magnetic & thermal shields, instrumentations, etc)

Parameters	Target Value	Units
Frequency	175	MHz
β value of the HWR	0.094	
Accelerating field E _a	4.5	MV/m
Quality factor Q_0 for R_s =20 n Ω	1.4 10 ⁹	
Beam aperture HWR / Solenoid Package	40 / 50	mm
Freq. range of HWR tuning system	± 50	kHz
Max. transmitted RF power / coupler	200	kW
External quality factor Q_{ex}	6.3 10 ⁴	
Transmission Lines for HWR	coax 6" 1/8	
Magnetic field B _z on axis max.	6	Т
∫ B.dl on axis	≥ 1	T.m
Field at cavity flange	≤ 20	mT
BPM position accuracy	0.25	mm
BPM phase accuracy	2	deg
Total Static/Dynamic Heat losses	18 / 120	W

Solenoid and Coupler

Alban Mosnier

IFMIF

Superconducting Cavities

• Two cavity prototypes completed in Summer 2010, delivered in Sept'10

- Original tuner design: relied on a capacitive plunger with a large membrane to allow an elastic deformation of ±1 mm
- First troubles during cryogenic tests reported in May 2011

Potential risks

- high peak magnetic field at membrane center
- Helicoflex gasket in region of significant field
- NbTi flange: poor thermal conductivity
- Fabrication issue: neck region contains two NbTi/Nb welds in a recessed area

Results of HWR vertical tests with plunger

Last cold tests of HWR prototypes with modified plunger (March & April 2012) *Nb membrane, In gasket, suppression of high field at the membrane center*

- Systematic thermal quenches at low field and drop of Qo
- Results point to a suspect plunger
- potential problems occurring in the main cavity body cannot be also ruled out
- Following up the recommendations of a Review Panel, a new design based on a conventional compression tuner principle is under development

Compression plunger

- Tuner only acts in one direction (compression)
- 800 kg on each side
- Lever ratio of ~30

Given the rigidity of the present resonator design, this solution implies a lengthening of the cryomodule lattice $\sim 10~{\rm cm}$ to ease the integration of the tuner between HWR tank & solenoid

 ⇒ modification of the tank and cavity and has to be compliant with JA regulations (mechanical stress)
 Total cryomodule extra-length ~ 80 cm

HEBT Line & Beam Dump

IFMIF

Alban Mosnier

Focusing Magnets

Reasonable magnetic field in the magnet ($\sim 1 \text{ T}$ in legs) Only sturation in the shims on the pole edges Non-linearity error < 0.1%.

Beam stopper at the end of the straight beamline: $\sim 350~ms$ max time to detect and stop the beam

IFMIF

Beam Dump

CIEMAT

Bellow

Cartridge

IFMIF

Inner & outer cones = Cu (edp) Cooled by liquid water (high v, 3 bar) T ~ 100 °C not too far from boiling

Remote disconnection system

Beam Dump prototypes and tests

- HEBT & Beam Dump in final stage of detailed design
- Cone prototypes built: electron beam welding and electro-deposition
- Hydraulic test cooling circuit

Hydraulic circuit: to study the fluid-dynamics aspects of the beam dump cooling (flow and pressure measurements, vibrations,heat transfer coef estimation,...)

demoulding

Alban Mosnier

Beam Instrumentation

Beam Profilers development

IPM

Principle: ionization of the residual gasResidual gas pressure: few 10^{-8} to 10^{-5} mbarResolution ~ 1 mmProfile rate ~ few HzApertures >10 cm for DP>15 cm for HEBT

Test at GSI (5 MeV.A, mA)

IPM in front of BD

Challenges: Large aperture (15× 15 cm²)

- Radiation hardness ~ 7 kSv/h (neutrons)
- ceramic (HV + strip plates) field uniformity

Principle: fluorescence by interaction of the beam with the residual gas

FPM

- 2 read-out prototypes tested
- ICID (Intensified Charge Injection Device) camera (MCP + CID)
- PMT: multi anode 32 channels linear array

Campaign tests at CNA cyclotron Sevilla: D⁺: 9 MeV and H⁺: 18 MeV

Extrapolation to LIPAc (125 mA) OK new tests done at Sevilla (Oct 2011) ...improved profile measurements

Parameter	Value
Operating Frequency	175 MHz
Bandwidth	± 250 kHz @ -1 dB
Phase Stability	± 1°
Amplitude Stability	± 1%
Power Linearity	1%
Full Output RF Power	200kW
Operating Modes	CW or pulsed mode
20kWCWReflectedPower	2 hours
RF Power Emergency Stop	<10 µs
200kW Reflected Power	10 µs

RF Power system

- Prototype RF module (1 x 200kW) ready end of 2012
- First RF module (2 x 100kW) ready beginning of 2013
- 16 kW solid-state amplifier (buncher) ready at mid-2013

Alban Mosnier

Alban Mosnier

IFMIF

Installation & Commissioning

End of BA Agreement

END