SUPERCONDUCTING SPOKE CAVITIES FOR ELECTRON AND HIGH-VELOCITY PROTON LINACS

Jean Delayen

Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility

History

- The spoke (and the half-wave) cavity was developed at ANL in the late 1980s for the acceleration of high-current medium velocity particles
 - ~10's mA, ~100 MeV, p and D, low emittance
 - Proposed for IFMIF
 - Proposed for ADS
- Support from DoD stopped in 1992, and in 1994 for IFMIF and ADS.
- Interest was revived in the late 1990s at ANL for RIA, and at other laboratories for other high-current ion accelerators
- The spoke geometry is now the geometry of choice in the medium velocity region and is being developed in many laboratories worldwide
- It is now under development for the acceleration of particles going at close to the velocity-of-light

850 MHz, β=0.3 Spoke (1990)

Fermilab Project X

ORSAY - EURISOL

Jefferson Lab

DMINION UNIVERSITY

Argonne National Lab

Closed symbols: 345 MHz, β=0.63

Small Size

About half of TM cavity of same frequency

- Allows low frequency at reasonable size
 - Possibility of 4.2 K operation
 - High longitudinal acceptance
- Fewer number of cells

Wider velocity acceptance

350 MHz, β = 0.45

- Strong cell-to-cell coupling in multi-spoke
 - All the cells are linked by the magnetic field
 - Field profile robust with respect to manufacturing inaccuracy
 - No need for field flatness tuning
 - Closest mode well separated

Magnetic Field Profile: 352 MHz, β=0.48 (FZJ)

• Accelerating mode has lowest frequency

- No lower-order mode
- Easier HOM damping

	J-Spoke		g-cell (
Mode #	Freq. (MHz)	∆f/f % of f _{ACC}	Freq. (MHz)	∆f/f % of f _{ACC}
1	345		1275.6	1.7
2	365	5.7	1277.6	1.6
3	401	14	1280.7	1.4
4	442	28	1284.5	1.1
5	482	40	1288.5	0.8
6	519.7	51	1292.4	0.5
7	520.2	51	1295.5	0.2
8	534	55	1297.6	0.05
9	619	79	1298.3	
10	679	97		

2 anaka

M. Kelly (ANL)

Q coll (TESLA)

- Electromagnetic energy concentrated near the spokes
 - Low energy content
 - High shunt impedance
 - Low surface field on the outer surfaces
 - Couplers (fundamental and HOM) can be located on outer conductor
 - Couplers do not use beamline space

325 MHz, β =0.17 (FNAL)

DMINION

How High Can We Go with β_g in Spoke Cavities?

- What are their high-order modes properties?
 - Spectrum
 - Impedances
 - Beam stability issues
- Is there a place for spoke cavities in high-β high-current applications?
 - FELs, ERLs
 - Higher order modes extraction

Compact Light Sources

- Most existing SRF cavities require or benefit from 2K operation
 - Too complex for a University or small institution-based accelerator
 - Cryogenics is a strong cost driver for compact SRF linacs
- Spoke cavities can operate at lower frequency
 - Lower frequency allows operation at 4K
 - No sub-atmospheric cryogenic system
 - Significant reduction in complexity
- Similar designs for accelerating low-velocity ions are close to desired specifications

Compact Light Sources

Jefferson Lab

GeV-scale Proton LINAC

Compact ERL (JAEA)

Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser Compton scattering γ -rays

Takehito Hayakawa ^{a,*}, Nobuhiro Kikuzawa ^{b,c}, Ryoichi Hajima ^c, Toshiyuki Shizuma ^a, Nobuyuki Nishimori ^c, Mamoru Fujiwara ^{a,d}, Michio Seya ^e

JAEA Tokai (650 MHz)

Jlab: Double spoke cavity RF design

- Goal is to maximize G*R/Q:
 - C \downarrow ; L \uparrow ; B field broad distributed
 - Longer and thinner spoke central part
 - Smaller end-cone radius
 - Larger spoke base in beam transverse direction
 - Make field stronger in the end-gap (by making the re-entrant part deeper)

Thomas Jefferson National Accelerator Facility

Jlab: Cavity RF design (2)

• Key is to maximize G*Ra/Q to minimize dynamic heat load

JLAB 352 N	IHz Cavity Design	Spoke	Elliptical	
Frequ	ency [MHz]	352	352	
Aperture	e diameter[mm]	50	170	
Lcavity (e	end-to-end) [mm]	1289 + 140	1277 + 300	
Cavity inn	er diameter [mm]	578	730	
Cavity weig	ht (3mm wall) [kg]	111	99	
Ep/Ea		4.3 ± 0.1	2.26 ± 0.1	
Bp/Ea	[mT/(MV/m)]	7.6 ± 0.2	3.42 ± 0.1	
Geometry factor [Ω]		179	283	
Ra/Q [Ω]		781	458	
Ra*Rs (=G*Ra/Q) [Ω^2]		$1.40 \ge 10^5$	1.29 x 10 ⁵	
	Ep [MV/m]	28.6 ± 0.9	15.0 ± 0.5	
At Vacc = 8.5 MV and	Bp [mT]	50.3 ± 1.5	22.8 ± 0.7	
4.5K. So Rbcs= $48n\Omega$, and assume Rres= $20n\Omega$	Max heat flux [mW/cm^2]	4.6	1.4	
	Q_0	2.6 x 10 ⁹	4.2 x 10 ⁹	
	Power loss [W]	35	42.6	
	Leff=1.5* β_0 * λ [m]	1.2768	1.2768	

Outside

Old Dominion University

- 325 MHz, β= 0.82 and 1, single and double
 Collaboration with JLab
- 352 MHz, β = 0.82 and 1, single and double
 - Collaboration with JLab
- 500 MHz, β = 1, double
 - Collaboration with Niowave
 - Collaboration with JLab
- 700 MHz, β = 1, single, double, and triple – Collaboration with Niowave, Los Alamos and NPS

Design Optimization (a small sample)

Page 21

Jefferson Lab

C. Hopper, ODU

Double Spoke

Surface Electric Field

Surface Magnetic Field

Cavity properties

Cavity Parameters	$\beta_0 = 0.82$	$\beta_0 = 1.0$	Units
Frequency of accelerating mode	325	325	MHz
Frequency of nearest mode	333	329	MHz
Cavity diameter	627	640	mm
Iris-to-iris length	949	1148	mm
Cavity length	1149	1328	mm
Reference length	757	922	mm
Aperture diameter at spoke	60	60	mm

Cavity Parameters	$\beta_0 = 0.82$	β ₀ = 1.0	Units
Frequency of accelerating mode	352	352	MHz
Frequency of nearest mode	361	357	MHz
Cavity diameter	563	595	mm
Iris-to-iris length	869	1059	mm
Cavity length	1052	1224	mm
Reference length	699	852	mm
Aperture diameter at spoke	50	50	mm

Cavity properties

RF properties	$325 \text{ MHz}, \\ \beta_0 = 0.82$	$325 \text{ MHz}, \\ \beta_0 = 1.0$	352MHz, $\beta_0 = 0.82$	$352 \text{ MHz}, \\ \beta_0 = 1.0$	Units
	Low Ep,Bp	High R	Low Ep,Bp	High R	
Energy gain at β_0	757	922	699	852	kV
R/Q	625	744	630	754	Ω
QRs	168	195	169	193	Ω
(R/Q)*QRs	1.05x10⁵	1.45x10 ⁵	1.07x10 ⁵	1.46x10⁵	Ω ²
Ep/Eacc	2.6	2.8	2.7	2.75	-
Bp/Eacc	4.97	5.6	4.9	5.82	mT/(MV/m)
Bp/Ep	1.9	2.0	1.8	2.12	mT/(MV/m)
Energy Content	0.45	0.56	0.35	0.43	J
Power Dissipation*	0.37*	0.43*	0.33**	0.36**	W
At Eacc = 1 MV/m and n *Rs = 68 nΩ **Rs = 73 nΩ	reference length β	λ			

Mode types in two-spoke cavities

Examples of modes for the 325 MHz cavity, β =1

Hybrid modes

OLD DMINION UNIVERSITY

R/Q values of HOMs

(*R*/*Q*) values for particles at design velocities $\beta_0=1$ and $\beta_0=0.82$ for the 325 MHz two-spoke cavity

C. Hopper, R. Olave, ODU

All HOMs have (*R/Q*)s significantly smaller values than the fundamental mode

Excitation of modes by a single bunch

Single Gaussian bunch, on-axis, $\sigma = 1$ cm (bunch couples only to accelerating modes)

C. Hopper, ODU ACE3P

Jefferson Lab

F. Krawczyk, LANL MAFIA

Multipoles

500 MHz, $\beta = 1$

Nonlinearities of field, 500 MHz cavity, racetrack spokes (symmetric tet [quarter] mesh)

Nonlinearities of field, 500 MHz cavity, ring-shaped spokes (symmetric tet [quarter] mesh)

Prediction of multipacting (MP) level

- No stable MP with impact energy between 60 to 1000 eV
- 0.5 4 MV and 5 9 MV is likely to have MP in the first high power RF test
- Some field levels are especially dangerous when the surface is not clean:
 - 1.4 1.7 MV and 2.3 2.9 MV in zone 1
 - 1.5 MV, and 2.4 2.6 MV in zone 2
 - 1.4 2.2 MV and 2.8 4.1 MV in zone 3
 - 6-7 MV in zone 4
- Plasma cleaning may be used to process away the MP

352 MHz, β=1 Feisi He, JLab

Multipacting

Multipacting

700 MHz, β=1 ACE3P R. Olave, ODU

Resonant electrons from the End Caps

Resonant electrons from the Outer Conductor

Resonant Electrons from the Right Spoke

700 MHz, β =1, double-spoke

Collaboration between Niowave, ODU, Los Alamos, NPS Designed By ODU Fabricated by Niowave

Parting Thoughts

- The first spoke cavity was developed more than 20 years ago
- The spoke geometry has a number of attractive features
- Many prototypes have been, or are being, developed in many institutions
 300 to 850 MHz, β from <0.2 to 1
- They are not yet in use in any operating machine
 - The main argument against using them seems to be that they are not in use yet
- β ~1 spoke cavities have been built and are undergoing test
 - They may be the first ones to accelerate beam
 - The first particle to be accelerated by a spoke cavity will probably be an electron

Acknowledgements

- ODU
 - Subashini de Silva
 - Christopher Hopper
 - Rocio Olave
- Jefferson Lab
 - Feisi He
- JAEA, Tokai
 Masaru Sawumara

- Los Alamos
 Frank Krawczyk
- Niowave
 - Chase Boulware
 - Dmitry Gorelov
 - Terry Grimm

