D. ALESINI, R. BONI, M. BELLAVEGLIA, G. DI PIRRO, M. FERRARIO, A. GALLO, A. MOSTACCI, L. PALUMBO, B. SPATARO

D. ALESINI, R. BONI, M. BELLAVEGLIA, G. DI PIRRO, M. FERRARIO, A. GALLO, A. MOSTACCI, L. PALUMBO, B. SPATARO

D. ALESINI, R. BONI, M. BELLAVEGLIA, G. DI PIRRO, M. FERRARIO, A. GALLO, A. MOSTACCI, L. PALUMBO, B. SPATARO

D. ALESINI, R. BONI, M. BELLAVEGLIA, G. DI PIRRO, M. FERRARIO, A. GALLO, A. MOSTACCI, L. PALUMBO, B. SPATARO

D. ALESINI, R. BONI, M. BELLAVEGLIA, G. DI PIRRO, M. FERRARIO, A. GALLO, A. MOSTACCI, L. PALUMBO, B. SPATARO

D. ALESINI, R. BONI, M. BELLAVEGLIA, G. DI PIRRO, M. FERRARIO, A. GALLO, A. MOSTACCI, L. PALUMBO, B. SPATARO

SPARC energy upgrade

SPARC energy upgrade

Motivations to upgrade the SPARC linac with a C-band system

- a) increase of the beam energy to ≈ 250 MeV due to the higher electric field of the C-band sections
- b) study and operate a double frequency linac
- c) improve the performances of the SPARC-Lab experiments

Development of a C-band accelerating structure

Most important specs.

- Traveling Wave, $2\pi/3$
- Constant Impedance (easy fabrication, less expensive)
- Large iris radius (better pumping speed, higher v/c, lower Esurface)
- Beam-pipe coupling (no slots on end-cells)

Cavity prototype

POWER TESTED at KEK

50 cm long including IN-OUT couplers		
20 RF cells		
Max Input power:	110 MW/ 300 ns / 50 pps	
Gradient achieved:	55 MV/m	
Breakdown rate :	3x10 ⁻⁴ bpp/m	

Development of a C-band accelerating structure

.... development of a C-band accelerating structure ...

The actual accelerating sections are in fabrication. The first one is completed and ready for power testing

Main specs of the actual sections

type	TW, CI, 2p/3, disk loaded
coupling	beam-pipe
n. of cells	71
Iris radius	7 cm
v/c	0.028
Shunt-impedance	83 MΩ/m
Filling time	150 nsec
E _{surf} /E _{acc}	2.17
Total length with cpl's	1400 mm

beam-pipe coupling

.... development of a C-band accelerating structure ...

The actual accelerating sections are in fabrication. The first one is completed and ready for power testing

Main specs of the actual sections

type	TW, CI, 2p/3, disk loaded
coupling	beam-pipe
n. of cells	71
Iris radius	7 cm
v/c	0.028
Shunt-impedance	83 MΩ/m
Filling time	150 nsec
E _{surf} /E _{acc}	2.17
Total length with cpl's	1400 mm

WAVEGUIDE NETWORK

XXVI Linear Accelerator Conference, Tel Aviv, Israel, Sept. 9-14, 2012

RF POWER STATION

Full Solid State Modulator ScandiNova 350 kV – 320 A 3 μsec – 10 pps

Klystron Toshiba E37202 5712 MHz 50 MW – 2.5 μsec – 10 pps

Solid State Amplifier MITEC Telecom C-band - 400 W – cw Broadcasting product

Latest test results on dummy load

 $40 \text{ MW} - 2 \mu \text{sec} - 10 \text{ pps}$