

Commissioning of a New Injector for the RIKEN RI-Beam Factory

N. Sakamoto^{A)}, M. Fujimaki^{A)}, Y. Higurashi^{A)}, H. Hasebe^{A)}, O. Kamigaito^{A)}, R. Koyama^{B)}, H. Okuno^{A)}, K. Suda^{A)}, T. Watanabe^{A)}, and K. Yamada^{A)} A) RIKEN NISHINA CENTER B) SUMITOMO ACCELERATOR SERVICE LTD.

Contents

- Introduction of RIBF accelerators
- Design and performance of RILAC2
- Results of beam commissioning
- Summary and plans

RIKEN RIB-Factory Overview

RIKEN RIB-Factory Overview

RIKEN RIB-Factory Overview

RIKEN RIR-Factory Overview

Injection to RRC

Injection to RRC

Injection to RRC

 CW mode operation Isochronous magnetic field Acceleration at the top of the RF longitudinal acceptance ±3° EDC RF fixed frequency operation Frequency 18.25 MHz Harmonic 9 Voltage 230 kV/turn Number of turns \sim 325 Extraction **Electric Deflection Channel** Turn gap \sim 5.5 mm **Beam Loss at EDC** Resonator Diagnostics for elaborate tuning **MDP: Main and Differential Probes** → Turn pattern **PP: Phase Probes** → Isochronism

Requirement for the injector

0.67 MeV/u

$|\Delta V/V| < 0.1 \%$, $|\Delta \Phi| < 0.1^{\circ}$

Beam stability

ΔT << 0.2 ns (= 3deg. of 18.25 MHz)

Contents

Introduction of RIBF accelerators

Design and performance of RILAC2

Results of beam commissioning

Summary and Plans

Overview of RILAC2

- Construction: FY2009, Installation: FY2010
- Beams: Xe and U, 0.67 MeV/u
 - First Beam: 2010/12/21 ¹²⁴Xe
 - Beam Service: 2011/12, 2012/6¹²⁴Xe, 2012/12²³⁸U
- Main Components

Ion Source: Superconducting Magnet w/ 28 GHz Gyrotron constructed in FY2008

Prebuncher (BUN): 18.25 MHz (CW)

4-Rod RFQ Linac: 36.5 MHz (CW)

Drift Tube Linac: 36.5 MHz (CW), 3 Cavities

Drift Tube Linac

RFQ Linac

Prebuncher

Bird's-eye view of RILAC2

SC-ECR

100 times more intense ²³⁸U³⁵⁺ than those from RIKEN 18GHz-

ECRIS.

Set of six superconducting trim coils:

Large plasma volume 1100 cm³

Flexibility of various magnetic field distribution on axis

*G. D. Alton and D. N. Smithe, Rev. Sci. Instrum. 65 (1994) 775

from classical B_{min} to so-called "flat B_{min}" * Schematic drawing of SC-ECRIS

Main parameters of Ion source

Maximum Binj	3.8T	
B _{min}		<1.0T
Br		2.2T
Bext		2.3T
DE Ĉ		20011
RF frequency		28GHz
max. power		10kW
Plasma chamber	diameter	15cm
	length	52cm
Typical base vacu	1x10-5Pa	
extraction voltage	22kV	

 $^{238}U^{35+} \sim 60 e \mu A$, $^{124}Xe^{25+} \sim 250 e \mu A$ (July 2012)

2. New Injector RILAC2

RFQ

Recycled a 4-rod RFQ linac kindly provided by Kyoto University.

K. Yamada et al., LINAC10

33.8 MHz	Origin	nal 36.5 MHz Vane Modified
Beam		Post
		Water nine
		Block tuper
Str.		DIOCK LUITEI
Frequency	36.5 MHz	
Duty	100 %	
<i>m/q</i> ratio	7	
Input energy	3.28 keV/u	
Output energy	100.3 keV/u	
Input emittance	200π mm·mrad	
Vane length	225.6 cm	260
Intervane voltage	42.0 kV	COVICE IS AND BOD DOWN
Mean aperture (r_0)	8.0 mm	Decement frequency f + 22 9 MUZ - 26 5 MUZ
Max. modulation (<i>m</i>)	2.35	Resonant nequency I_0 . 33.0 MITZ \rightarrow 30.3 MITZ
Focusing strength (B)	6.785	$m/q \approx 7$ ions accelerated to 100 keV/u without

Resonant frequency f_0 : 33.8 MHz \rightarrow 36.5 MHz m/q \approx 7 ions accelerated to 100 keV/u without changing vane electrodes. Unloaded Q : 5400 \rightarrow 5000 (measured)

Final synchronous phase -29.6°

5000

~50 kΩ

~18 kW

Unloaded Q

Shunt impedance

Required rf power

2. New Injector RILAC2

DTL

• 36.5 MHz (CW) QWR Low-β: 0.015-0.038 **Capacitive Coupler, directly** coupled with the amplifier Low-power tests Q: 78 % of ideal **Resonant Frequency was** 0.2 % higher than MWS K. Suda et al., TUPB095 •Amplifier:

based on Tetrode (EIMAC 4CW50,000E)

load resistance of the tube \rightarrow 700 Ω

10/20

RF errors

- Long-term operation test
- RF errors

$|\Delta V/V| < 0.1 \%$, $|\Delta \Phi| < 0.1^{\circ}$, stable operation with high reliability

•Analogue feedback:

Auto Gain Control, Auto Phase Lock, Auto Frequency Tuning

Monitoring system based on the RF Lock-in amp, SR844

LINAC12 10/SEP/2012

2. New Injector RILAC2

Contents

Introductionof RIBF accelerators

Mew Injector RILAC2

Beam Commissioning

Summary and Plans

Repair to Main Coil of RRC Sector Magnet

Beam Commissioning

Acceleration test (RILAC2 stand alone)

First Beam:

2010/12/21 ¹²⁴Xe

Beam Energy and Transmission Efficiency

Beam Stability

Commissioning to RIBF (injection to RRC)

Beam Service:

2011/12, 2012/6¹²⁴Xe,

2012/12 ²³⁸U

Acceleration Efficiency of RRC

Short life time of charge stripper

Acceleration Test (Energy and Transmission Efficiency)

Acceleration Test (Stability)

Beam intensity and Injection timing of the beam accelerated by RILAC2

15/20

Injection to RRC (Acceleration Efficiency)

E-Sector: Upper coil short

Acceleration Efficiency = $50 \sim 60 \%$

Why?

- 1. Bunching efficiency \sim 80 %
- 2. Poor Turn separation
- →Low Acc. Voltage
- →Emittance mismatch?

Transverse? Longitudinal?

→Imperfect Magnetic field?

0.5 mm

Beams

Lifetime of the stripper foil

~10 e µ A@FCA0a1

- Rotating Stripper
 H. Ryuto, et al., Nucl. Instru. Meth. A569(2006)697.
- CNT-SDC

Carbon nanotube/sputter deposited carbon

Frequency of exchange : 1 time/4-5days providing ~3.5 pnA

3. Beam Commissioning

Lifetime of the stripper foil

• Carbon foil became significantly thinner

Exchange : 2-3 times/day providing ~25 pnA

CS1

Contents

Introduction of RIBF accelerators

Over State And Design and performance of RILAC2

Results of beam commissioning

Summary and Plan

Summary

RILAC2 was successfully commissioned

RF errors , $|\Delta V/V| < 0.1 \%$, $|\Delta \Phi| < 0.1^{\circ}$

High Reliability, down time due to the RILAC2 RF was < 0.3 %

Transmission efficiency (RILAC2) \sim 75 %

Stable beams were provided as an injector to cyclotron ($|\Delta T| < 0.2$ ns)

Beam commissioning to RRC

Acceleration efficiency of RRC is 50-60 %

Beam Intensity at SRC (345 MeV/u) was greatly increased as:

²³⁸U: 3.5 pnA, ¹²⁴Xe: 24 pnA

 Synthesis of SHE and RIBF experiments were performed simultaneously.

4. Summary and Plan

Plans

U and Xe Beam Service scheduled (Oct-Dec, 2012)

Plans

HIAT2015

(The 13th Heavy Ion Accelerator Technology Conference)

September 6 -11, 2015

YOKOHAMA, JAPAN

Thank you.

2. New Injector RILAC2

DTL

Design Parameters of DTL

	DTL1	DTL2	DLT3
Frequency (MHz)	36.5	36.5	36.5
Duty (%)	100	100	100
<i>m/q</i> ratio	7	7	7
Input energy (keV/u)	100	220	450
Output energy (keV/u)	220	450	680
Length (cm)	80	110	130
Height (mm)	1320	1429	1890
Gap number	10	10	8
Gap length (mm)	20	50	65
Gap voltage (kV)	110	210	260
Drift tube aperture (mm)	17.5	17.5	17.5
Peak surface field (MV/m)	8.9	9.4	9.7
Synchronous phase (deg.)	-25	-25	-25

Schematic of DTL1 and DTL2 cavities.

1. Cyclotron cascades consist of RRC, and new booster cyclotrons with an injector linac.

	RRC	fRC	IRC	SRC
K (MeV)	540	570	980	2600
Number of Sectors	4	4	4	6
Velocity Gain	4	2.1	1.5	1.5

f = 18.25 MHz

1. Cyclotron cascades consist of RRC, and new booster cyclotrons with an injector linac.

2. Fixed energy mode dedicated for the acceleration of U and Xe to 345 MeV/u.

	RILAC2	RRC	fRC	IRC	SRC
Energy (MeV/u)	0.67	10.75	51	114	345

Carbon Foil Strippers

- 1. Cyclotron Cascades consist of RRC, and new booster cyclotrons with an injector linac.
- 2. Fixed energy mode dedicated for the acceleration of U and Xe to 345 MeV/u.
- 3. Charge Stripping is made twice at the injection to FRC and the injection to SRC.

	IS	RILAC2	RRC	fRC	IRC	SRC
U	35	←	\leftarrow	71	86	~
Xe	20	←	\leftarrow	46	52	~

- 1. Cyclotron cascades consist of RRC, and new booster cyclotrons with an injector linac.
- 2. Fixed energy mode dedicated for the acceleration of U and Xe to 345 MeV/u.
- 3. Charge Stripping is made twice at the injection to FRC and the injection to SRC
- 4. Rebunchers compensate the beam energy error keeping the injection timing constant.

No Charge Stripping

- 1. Cyclotron cascades consist of RRC, and new booster cyclotrons with an injector linac.
- 2. Fixed energy mode dedicated for the acceleration of U and Xe to 345 MeV/u.
- 3. Charge Stripping is made twice at the injection to FRC and the injection to SRC
- 4. Rebunchers compensate the beam energy error keeping the injection timing constant.
- 5. Intense uranium and Xe beams from IS are accelerated by RRC without charge
- stripping before injection.