

STATUS OF THE EUROPEAN XFEL CONSTRUCTING THE 17.5 GEV SUPERCONDUCTING LINEAR ACCELERATOR

Winfried Decking, DESY

for the European XFEL Accelerator Consortium

HELMHOLTZ | ASSOCIATION

Up to 17.5 GeV SC Linac, 27000 pulses per second

- Up to 17.5 GeV SC Linac, 27000 pulses per second
- Three moveable gap undulators for hard and soft X-rays

- Up to 17.5 GeV SC Linac, 27000 pulses per second
- Three moveable gap undulators for hard and soft X-rays
- Initially 6 equipped experiments

Built by 12 European Nations at DESY, Hamburg

Budget 1.150 MEuro incl. preparation and commissioning

XFEL Parameters

Quantity	Value
electron energy	10.5/14/17.5 GeV
macro pulse repetition rate	10 Hz
RF pulse length (flat top)	600 μs
bunch repetition frequency within pulse	4.5 MHz
bunch charge	0.02 – 1 nC
electron bunch length after compression (FWHM)	2 – 180 fs
Slice emittance	0.4 - 1.0 mm mrad
beam power	500 kW
# of modules (containing eight 9-cell superconducting 1.3 GHz cavities)	101
accelerating gradient for 17.5 GeV	23.6 MV/m
# of 10 MW multi-beam klystrons	27
average klystron power (for 0.03 mA beam current at 17.5 GeV)	5.2 MW
photon wavelength	0.05 – 4 nm

XFEL Civil Construction Status

- Three construction sites
- 5.8 km tunnels
- 12000 m² surface are buildings
- 150000 m³ of underground building volume

Osdorfer Born

E

Schenefeld Experimental Hall

17/18

4 June 2012 Tunnel breakthrough All tunneling finished

XFEL CAD Model of LINAC installation

European XFEL

EL Accelerator Installation – Warm Beamlines

10.09.2012, LINAC12, Tel Aviv Winfried Decking, DESY

16

XFEL Technical Infrastructure Installation

- Detailed planning of needed infrastructure previous to tendering and installation
- Installation has started in main linac tunnel Q1/2012
- Planning diagram shows
 - when, where and how long a task takes place
 - which tasks can go on in parallel (or not)

TUPB015 Markus Huening (DESY)

Warm Beamlines and Infrastructure in the European XFEL

XFEL European XFEL at a Glance

XFEL Injector

- Gun development at PITZ, DESY Zeuthen
- New best values for emittance achieved
- XFEL gun cavity starts to be conditioned in autumn 2012
- 3.9 GHz accelerator module (for bunch length control), design finished, prototype cavities in test

- Transvers Intra-Bunch Feedback
- Flexible beam distribution system for quasisimultaneous operation of two primary electron beam lines

XFEL Collimator

- Series production of 90 undulators started
- Focusing quadrupoles manufactured and precision fiducialization
- Series production of intersection components started

Superconducting Cavities

XFEL Cavity Material Supply

- Nb sheets and supplementing material purchased by DESY through 4 prequalified vendors
 - Pressure Equipment Directive: Qualification of material, certification of QM, supervision of production through notified body (TUEV Nord)
 - Quality inspection of all semi-finished parts at DESY prior to shipment to companies
 - eddy current scanning
 - tactile 3d measurements
 - 70% 100% material already delivered to companies

Acceptance of Nb sheets at Ningxia OTIC (courtesy of NOTIC)

Eddy current scan at DESY

XFEL Mechanical fabrication

- Mechanical fabrication at RI & Zanon
 - deep drawing of half cells
 - welding of dumb bells
 - rf measurements
 - e-beam welding of 9-cell cavities
- Process qualification through production of reference cavities (RC) and dummy cavities (DC)

E-beam welding at Zanon (courtesy Zanon)

> E-beam welding at RI (courtesy RI)

RF measurement and tuning equipment at RI

All RCs and DCs produced and treated and RF tested at DESY

MOPB012 Alexey Sulimov (DESY) First RF Measurement Results for the European XFEL SC Cavity Production

Fabrication of dumb-bells at RI (courtesy of RI)

- Installation of equipment for surface treatment at companies almost finished
- Qualification of surface treatment in multi-step process with intermediate RF tests at DESY this fall

Furnaces for 120° C baking (courtesy Zanon)

Ultrasonic Cleaning and BCP in ISO 10 clean room (courtesy Zanon)

800° C annealing furnace (courtesy RI)

European **XFEL** Cavity Measurements

- All 800 cavities CW power measured in vertical cryostat at AMTF
- Four cavities/cryostat
- Non-conforming cavities repaired at **DESY** infrastructure
- Conforming cavities shipped to Saclay

Assembly

Cool down

Warm up

Disassembly

RF test

34 steps to perform 01

XFEL String Assembly

EuropeanXFELString Assembly

- Infrastructure installed at CEA Saclay (XFEL-Village) for string assembly
- Training of CEA staff with XFEL proto-type cavities
- Assembly will be performed by industrial operator
- Contract signed, training will start autumn this year

THPLB09 Thu 15:30 - 15:35,Catherine Madec (CEA Saclay) Status of E-XFEL String and Cryomodule Assembly at CEA-Saclay

MOPB017 Elmar Vogel (DESY) Integration of the European XFEL Accelerating Modules

XFEL String Assembly

8 Power couples (LAL Orsa 8 Cavity tuners (DESY) Quadrupole package (CIEM Madrid & DESY

10.09.2012, LINAC12, Tel Aviv Winfried Decking, DESY

34

XFEL Module Assembly

XFEL Module Assembly

- Cold masses from IHEP and Zanon
- Assembly at CEA Saclay
- Tools and infrastructure ready
- Training of industrial operator starts autumn 2012

10.09.2012, LINAC12, Tel Aviv Winfried Decking, DESY

HELMHOLTZ

XFEL Module Assembly

- Assembly:
 - string connected to the He return pipe (cold mass)
 - components aligned
 - insulation and shields
 - insertion into cryostat
 - Assembly of warm coupler parts
 - transportation preparation: assembly of end-caps, nitrogen filling of the cavities and assembly of surveillance instrumentation

 Road transport from CEA Saclay to DESY for final testing

XFEL Module Testing

Accelerator Module Test Facility (AMTF)

Storage area

Transport area

Rails

Incoming inspection

Incoming inspection

and nreparation area

aration area

J PAN

Platform for inserts

Bore Du

RF area

where the cavities and the modules will be tested

Flow Diagram of Module Test

XFEL High Power RF System

- 10 MW multi-beam klystron
- Contract Awarded, first series klystrons delivered 8/2012

TUPLB04 15:05 - 15:10, TUPB004 Vladimir Vogel (DESY) Results of Testing of Multi-beam Klystrons for the European XFEL

 Pulse Transformer and klystron installed in tunnel

- Modulator installed on surface Connection with up to 2 km long pulse cables
- All components ordered, cable installation starts next month

Waveguide Distribution

- Pre-installed in AMTF
- AMTF wave-guide test are
- the call for tender started with specified delivery date of first waveguide distribution system in in autumn 2012

XFEL Low Level RF System

MicroTCA based LLRF system

- RMS amplitude regulation of 5 x 10–5
- Phase regulation of 0.009°
- expected beam energy stability < 0.005%</p>

THPB085 Julien Branlard (DESY) *LLRF Automation for the 9mA ILC Tests at FLASH* THPB086 Christian Schmidt (DESY) *Precision Regulation of RF Fields with MIMO Controllers and Cavitybased Notch Filters*

XFEL Cold Linac Infrastructure

- Refurbishment of HERA cryo plant started
- Challenging schedule because of early operation start in 2014 to operate the XFEL injector
- Planning, production and installation of cryogenic equipment for accelerator and AMTF continued

XFEL Overall schedule – and its challenges

XFEL Last Words

- Progress on construction, infrastructure planning and ramp up of accelerator component fabrication
- Challenge to get the series production of accelerator modules started
- Working hard to finish installation in time for
 - start of injector commissioning mid 2014
 - start of linac commissioning mid 2015
 - observe first SASE by end of 2015

Thanks to all people contributing to this exiting project

Back Up

Conclusion:

Projecting to 8 cavities operating at 1.8 K, one should be able to reach 21.5 MV/m at DF=17% (flat-top 140 ms) at 20 W/cryomodule

TUPB019 Jacek Sekutowicz (DESY)

Second CW and LP Operation Test of XFEL Prototype Cryomodule

XFEL Surface Treatment

Prior surface treatment.

EP 110-140 m(main EP), ethanol rinse, outside BCP, 800°C annealing, tuning

Final surface treatment -two alternative options

 Final EP of 40 m, ethanol rinse, high pressure water rinsing (HPR) and 120°C bake (RI)
Final PCP of 10 m(PCP Flach)

2. Final BCP of 10 m(BCP Flash), HPR and 120°C bake (EZ).

Integration of the helium tank, assembly of HOM, pick up and high Q antennas before vertical RF test

49