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Abstract

It is well known that each resonant mode in the RF

spectrum of multi-cell accelerating cavities will split into

a passband containing a number of modes, and that the

coupling of these modes to the beam is dependent on the

velocity of the accelerated particles. If these modes are

found to degrade the quality of the beam, it is possible to

take various measures to damp them, and thus keep their

effect below some critical threshold. In the case of the par-

asitic modes within the same passband as the fundamental

accelerating mode, their frequency is typically too close to

that of the fundamental to allow their power to be safely

extracted, and so cavity designers must rely on the natural

damping of the cavity itself. This note contains a theoret-

ical discussion of the coupling of the beam to these pass-

band modes for a large class of accelerating cavities, and

provides a mathematical model for use during the design

and optimisation of linacs.

INTRODUCTION

In general, π-mode accelerating cavities act as several

coupled cells, each of which resonates at almost the same

frequency. The cell-cell coupling splits each of the res-

onances into a passband containing the same number of

modes as there are coupled cells. Each of these will have

the same character (i.e. TMmnp, TEmnp, etc.) as the single

cell resonance, but may be differentiated by their frequency

and cell-cell phase difference.

Modes lying within the same passband as the accelerat-

ing mode will be referred to as Same Order Modes (SOMs),

while others will be called Higher Order Modes (HOMs).

Various schemes are used to damp the power in these

parasitic modes so that their amplitude has fallen below

some threshold value by the time a subsequent beam pulse

arrives at the cavity, however the SOMs remain problem-

atic since the similarity of their frequency and structure

with the desired fundamental mode mean that it is normally

not possible to damp their power sufficiently.

In storage rings or CW linacs, the pulses last long

enough that modes whose frequency, fm, does not lie

within a very small region around an integer multiple of

the bunch repetition frequency, n·fb±∆f , will be “washed

out”, and will not obtain an amplitude large enough to

cause problems. In other words, these modes will be ex-

cited at all phases, thus resulting in almost complete can-

cellation.

In the case of pulsed machines, the shortness of the pulse
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will increase the window, ∆f , in which damaging para-

sitic modes might exist. Equivalently, decreasing the pulse

length will increase the proportion of the bunch train that

will experience high field amplitudes for the parastic modes

before their phase slip with respect to the bunch frequency

begins to damp them. Therefore, studies of these modes

are important for pulsed machines such as the European

Spallation Source (ESS).

Velocity range

In machines that accelerate “heavy” particles such as

protons or ions, the accelerating cavities must be designed

so as to handle the changing velocity of the beam. Often,

linacs are divided into various families of cavities, each of

which is optimised for a particular beam velocity. These

cavities will have a velocity range over which the efficiency

of the acceleration is considered to be acceptable, and so

optimisation of the linac design proceeds while taking these

boundaries into account.

Just as the efficiency of the accelerating mode (i.e. the

coupling of the mode to the beam) is a function of the beam

velocity, so is the coupling to the SOMs, and there may be

a velocity range where the coupling to a SOM exceeds that

of the accelerating mode. In this case, it is likely that this

mode will cause significant deterioration of the quality of

the beam pulse.

Therefore, the function of the beam’s coupling to the

SOMs may provide a tighter limit on the acceptable veloc-

ity range of the cavity than would otherwise be expected.

CAVITY MODEL

The cavity model used here follows the derivation used

in [1], although note that there are several typos in that

paper that make the quantitative conclusions unreliable.

Much of the calculation may also be extrapolated from [2].

Figure 1: Lumped circuit model of a a five-cell cavity con-

nected at both ends to a beam-pipe.

Figure 1 shows the lumped circuit used to model a five-

cell cavity coupled to a beam-pipe.

The coupling, k, between each cell, and between the end

cells and the beam pipe, is modeled as a transformer, and

the cells are modelled as resonant circuits. The values of k,

L0, & C0, may be derived from the desired response of the

circuit (i.e. resonant frequency, etc.).
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Note that the model shown in figure 1 is appropriate for a

cavity composed of identical cells. The standard presenta-

tion of this circuit removes the transformers from either end

cell, each of which are terminated with a short. The halv-

ing of the cell’s inductance is compensated by doubling the

value of the capacitance in each of these end cells. This re-

sults in a string of cells with the correct amplitude variation,

however, as noted in [1], the phase relationship between the

cells is no longer modelled correctly.

A more correct approach would be to start with the

model shown in figure 1, but add an error, δf , to the res-

onant frequency of the final cells. This error will alter the

frequency & phase characteristics of each of the modes in

the passband, and can be set so as to achieve the desired

field characteristics for the accelerating mode.

BEAM-CAVITY COUPLING

The purpose of this note is to determine the functional

relationship between the beam’s velocity, v = βc, and its

coupling to the fundamental mode & the nearest SOM. The

permissible velocity range of the cavity is then arbitrarily

defined as the points on either side of this maximum where

the couplings to the two modes has become equal.

Cell amplitudes

In the model presented here, each cell has the same fre-

quency, ω0 = 2πf0 = 1/
√
2L0C0; i.e. the frequency error

usually introduced to tune the field is not present.

For each cell, an equation can be written by summing the

currents around each circuit.

X1

[

1−
ω2
0

ω2
q

]

+X2
k

2
= 0 n = 1 (1)

Xn

[

1−
ω2
0

ω2
q

]

+ (Xn−1 +Xn+1)
k

2
= 0 2 ≥ n ≥ N − 1

(2)

XN

[

1−
ω2
0

ω2
q

]

+XN−1
k

2
= 0 n = N (3)

These equations describe the current, Xn ≡ ik
√
2Ln,

in the k-th cell of the cavity, oscillating in the q-th mode

with an angular frequency, ωq. They may be rearranged as

a matrix equation as follows.

LX = AX (4)
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X ≡







X1

...

XN






(N × 1) (6)

A ≡ ω−2
q (7)

Note that equation 4 has the same form as an eigenvalue

equation, and so the vector, X , is an eigenvector of the

matrix, L, while the scalar, A, is an eigenvalue.

Therefore, the frequencies & distribution of the cell am-

plitudes can be found for each of the N modes by finding

the eigenvalues/vectors of the N×N matrix, L.

For a general mode, q, it can be shown that the j-th com-

ponent of the eigenvector, Xq,j , is as follows.

Xq,n = Kq · sin
(

πn

(

1−
q

N + 1

))

q, n = 1, . . . , N

(8)

Here Kq is an arbitrary scaling constant that may be used

to normalize the eigenvector to be of unit length.

Figure 2: Amplitude of the accelerating mode, q=1, & the

nearest SOM, q=2, in each cell of a five-cell cavity. Note

that the scaling constants have been set, K1 = K2 = 1.

Figure 2 shows the expected eigenvector amplitudes for

the accelerating mode, q=1, & the nearest SOM, q=2, of

a five-cell cavity. Note that the accelerating mode is signif-

icantly different from the usual flat field-profile due to the

fact that each of the cells in this calculation are modelled

as having the same resonant frequency. This is due to the

fact that the usual shift in frequency of the end-cells has not

been taken into account.

In the remainder of this note, it will be assumed that this

tuning has occurred, and that the amplitudes of the acceler-

ating mode in each cell are identical. This assumption will

not be used for the remaining modes, thereby introducing a

small error into the results.

The symmetry of the nearest SOM around the central

cell of the cavity can be seen quite clearly, as well as the

fact that this mode has an odd distribution; i.e. a negative

parity under reflection about the centre cell.

Field profile

In order to simplify subsequent calculations, the field

profile of the beam is modelled as a concatenation of a se-

ries of half-cycles of sine-waves (one for each cell) whose

amplitude is determined by equation 4. Figure 3 shows the
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Figure 3: Approx. profile of the accelerating mode in a 5

cell cavity compared with a 3D simulation.

results of this in comparison to data extracted from a 3D

simulation of a similar cavity.

These figures show that this approximation is sufficient

for the accelerating mode – although remember that these

amplitudes are set to be constant, and not gathered from

equation 4. The approximation for the SOM is not so good,

however it can be argued that the locations where the ap-

proximation over-estimates the field are cancelled by those

where it is under-estimated.

Integration with beam velocity

This approximation to the field profile can then be inte-

grated with a term that provides the necessary phase varia-

tion of the RF oscillating with frequency, ω = 2πf .

The following determines the voltage, Vq,n, experienced

by a particle moving with velocity, v = βc, along the z axis

of cell, n. Note that the limits of the integral are defined as

the beginning & end of a cell designed for a particle moving

with speed, v0 = β0c.

Vq,n = Xq,n

zn+1
∫

zn

sin

(

ωq

β0c
(z − zn)

)

sin

(

ωq

βc
z

)

dz (9)

zn ≡ (2n−N)
β0λ

2
(10)

This integral may be solved by integrating by parts twice

in order to obtain the following.

Vq,n = Xq,n

β2

β2
0 − β2

β0c

ωq

·
[

sin

(

(2n−N)
β0

β

π

2

)

+ sin

(

(2n−N−2)
β0

β

π

2

)]

(11)

Note that equation 11 is completely general in that no

assumptions have been made about the eigenvector, Xq,n,

or about the number of cells, N .

To obtain the voltage for the entire cavity, this result is

then summed over the number of resonant cells.

Vq =

N
∑

n=1

Vq,n (12)

It can be seen that symmetric structure within Xq,n, in

combination with the parity property of the sin function,

will lead to cancellations in equation 11, and a substantial

reduction in the number of terms within the summation.

RESULTS

The consequences of equations 11 & 12 are examined

for the case of a 5-cell cavity (i.e. N = 5).

V (4) =
β2

β2
0 − β2

β0c

ω

[

sin

(

β0

β

5π

2

)

− sin

(

β0

β

π

2

)]

(13)

V (5) =−
2√
5

β2

β2
0 − β2

β0c

ω
cos

(

β0

β

5π

2

)

(14)

Here the voltages, V (4) & V (5), correspond to the volt-

ages obtained for the nearest SOM (4π/5 mode, q = 2),

and the accelerating mode (5π/5, q = 1) respectively.

Note that the integral performed to obtain the result in

equation 14 used a cosine variation of the field due to the

even parity of the eigenvector for that mode (i.e. the second

sin() in equation 9 was exchanged for a cos()).

Figure 4: V (4) & V (5) vs β for a 5-cell, β0=0.67, cavity.

Figure 4 shows the variation of V (4) and V (5) for a 5-cell

cavity designed for β0 = 0.67.

Note that an estimation of the acceptable velocity range

based purely on the coupling to the accelerating mode

might conclude with 0.54 ≥ β ≥ 0.92, which could lead to

subsequent problems due to the excessive excitation of the

SOM at either end of the range.

DISCUSSION

Many computer codes used to optimise high power

linacs neglect to take account of these additional modes,

and so it is possible that the optimisation will lead to solu-

tions whereby a SOM is sufficiently excited to disrupt the

phase space of the beam [3].

While a general solution to the problem, V (N−1) (β) =
V (N) (β), may be difficult to write down explicitly, it

would be possible to add such limits to a computer code.
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