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Abstract

Forming the charge particle beams with small cross-

sections and low energies is an actual problem for linac

design. That beams are used actively for isotope therapy,

ion implantation, etc. Beam emittance is its quality fac-

tor, and it should be matched with a facility channel ac-

ceptance. The method for beam dynamics analysis at linac

is developed in terms of non-coherent particle oscillation

study. Nonlinear beam dynamics is investigated by using

this method. It is shown that this technique allows one to

realize effective beam handling and emittance control. An-

alytical results obtained are verified by means of numerical

simulation.

INTRODUCTION

One of the most interesting problems of accelerator en-

gineering to date are the design and development of high-

performance high-current compact systems for an injection

and acceleration of low-velocity heavy-ion beams. This

problem as well as others cannot be solved without taking

into account problem solution on beam emittance match-

ing with an acceptance of an accelerator channel. Effective

acceptance evaluation for the resonance accelerator chan-

nel depends on a mathematical model used for describing a

beam dynamics. Effective acceptance evaluation of the res-

onance accelerator channel was performed previously on

basis of charged particle beam oscillation as a whole [1] –

[4], that is under the assumption of coherent oscillations of

individual particles. It is of particular interest to consider a

model, which is taking into account non-coherent particle

oscillations in the beam, and analyse results based on it.

BEAM DYNAMICS

It is difficult to analyse a beam dynamics in a high fre-

quency polyharmonic field. Therefore, we will use one of

methods of an averaging over a rapid oscillations period,

following the formalism presented in [1] – [4]. One first

expresses RF field in an axisymmetric periodic resonant

structure as Fouriers representation by spatial harmonics

of a standing wave assuming that the structure period is a

slowly varying function of a longitudinal coordinate z

Ez =

∞
∑

n=0

EnI0 (knr) cos

(
∫

kn dz

)

cosωt,

Er =

∞
∑

n=0

EnI1 (knr) sin

(
∫

kn dz

)

cosωt,
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where En is the nth harmonic am-

plitude of RF field on the axis;

kn = (1 + 2n)π/D is the propagation wave number

for the nth RF field spatial harmonic; D is the resonant

structure geometric period; ω is the RF frequency; I0,

I1 are modified Bessel functions of the first kind.

As it was stated above, we will take into account non-

coherent particle oscillations in the beam being accelerated.

To this end, one introduces a notion of a reference particle,

i.e. a particle moving on the channel axis. A magnetic force

can be neglected for low-energy ions. We will assume that

dr/dz ≪ 1. Then, one passes into the reference particle

rest frame. There is a differentiation over longitudinal co-

ordinate in the beam motion equation. Thus, the motion

equation together with an equation of particle phase varia-

tion can be presented in a view of a system of the first order

differential equations as follows















dΓ

dξ
= ez(ξ, 0, τ

∗) − ez(ξ, ρ, τ),

dβr
dξ

= β−1
z er(ξ, ρ, τ).

(1)

Here we introduced the following dimensionless vari-

ables: Γ = γ∗ − γ; γ∗ and γ are the Lorentzs factors

for the reference and given particles respectively; ξ =
2πz/λ is dimensionless longitudinal coordinate; ez,r =
eEz,rZλ/2πm0c

2; e is the elementary charge; Z is a

charge state of an ion; λ is a wave length of RF field; m0 is

an ion rest mass; c is the light velocity in free space; βz,r is

normalized velocity component.

Let us introduce a new dynamical variable ψ = τ − τ∗

(τ = ωt, τ∗ is a normalized motion time of the reference

particle at the laboratory coordinate system). Note, that

dψ

dξ
= β−3

s Γ, (2)

βs is normalized synchronous particle velocity, s is the field

harmonic number.

Suppose that |βz − βs| ≪ 1 one can obtain

d2ψ

dξ2
+ 3κ

dψ

dξ
=

1

β3
s

dΓ

dξ
(3)

upon differentiation of Eq. 2. The second equation of Eq. 1

can be rewritten as

d2δ

dξ2
+ κ

dδ

dξ
=
er
β3
s

, (4)

where δ = ρ/βs, ρ = 2πr/λ, κ = ln′

ξ βs.
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On averaging Eq. 3 and Eq. 4 over rapid oscillation pe-

riod one can present the motion equation in the smooth ap-

proximation with the restrictions mentioned above in the

following matrix form

Ϋ + ΛΥ̇ = −LΦef , (5)

where the dot above stands for differentiation with respect

to the independent longitudinal coordinate and

Υ =

(

ψ

δ

)

, Λ =

(

3κ 0
0 κ

)

, L =

(

∂
∂ψ
∂
∂δ

)

.

Now, ψ and δ mean its averaged values. Φef plays role

of an effective potential function (EPF) describing a beam

interaction with the polyharmonical field of the system sub-

ject to the incoherent particle oscillations.

For example, we consider there are two spatial harmon-

ics at the linac. One of it is the synchronous harmonic with

s = 0, and another one is the nonsynchronous (focusing)

with n = 1. In this case we have

Φef =
e0
2βs

[I0(δ) sin(ψ + ϕ∗) − ψ cosϕ∗ − sinϕ∗]

+
e20
64

[

I2
0 (δ) + I2

1 (δ) − 1
]

+
5e21
256

[

I2
0 (3δ) + I2

1 (3δ) − 1
]

−
e20
32

[I0(δ) cosψ − 1] −
5e21
128

[I0(3δ) cosψ − 1]

−
e0e1
32

{[I0(δ) + I0(3δ)]cos(ψ + 2ϕ∗) − 2 cos 2ϕ∗}

+
e0e1
32

{[I0(δ)I0(3δ) + I1(δ)I1(3δ)] cos 2(ψ + ϕ∗)

− cos 2ϕ∗} ,

where en = eEnZλ/2πβ
2
sm0c

2.

To define eigenfrequencies of small system vibrations,

EPF is expanded in Maclaurins series

Φef =
1

2
Ω2

0ψψ
2 +

1

2
Ω2

0δδ
2 + o

(

ΥTΥ),

and the coefficients in which are given by

Ω2
0ψ = −

e0
2βs

sinϕ∗ −
e0e1
16

cos 2ϕ∗ +
e20
32

+
5e21
128

,

Ω2
0δ =

e0
4βs

sinϕ∗ +
3e0e1
64

cos 2ϕ∗ +
e20
128

+
45e21
512

.

NUMERICAL SIMULATION

The analytical results obtained above were used to in-

vestigate the beam matching possibility at the linac out-

put. The beam was the unbunched 2.5 keV/u lead ions

Pb25+ with charge-to-mass ratio is equal to 0.12. Self-

consistent beam dynamics simulations were conducted by

means of a modified version of the specialized computer

code BEAMDULAC-ARF3 based on CIC technique to cal-

culate beam self-space-charge field. Computer simulation

was carried out for the linac structure under the following

parameters: λ = 8.88 m, system length is equal to 2.5 m,

channel aperture is equal to 5 mm; input and output values

of the equilibrium particle phase are equal to −π/2 and

−π/6 respectively, synchronous harmonic maximal value

at the axis is equal to 16 kV/cm, e1/e0 = 9. The equi-

librium particle phase linearly increases at the bunching

length (1.75 m) and plateaus further. Note that the vari-

ation of the synchronous harmonic amplitude against lon-

gitudinal coordinate (at 1.75 m) was calculated by using

the technique described in [1]. Initial beam radius and cur-

rent were 1 mm and 5 µA respectively. This parameters

guarantee a positivity of the eigenfrequency of the small

transverse tunes and, therefore, provide beam matching at

the linac output. The output beam energy and current trans-

mission coefficient were 100 keV/u and 85% respectively.

4D beam phase volume projection onto (ψ, ψ̇) phase

plane together with phase paths calculated in keeping with

Eq. 5 at linac output is shown in Fig. 1. There are chan-

nel longitudinal acceptance in conservative approximation

(curve 1) as well as channel dynamical acceptance in Fig. 1

too.
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Figure 1: 4D beam phase volume projection and phase

paths.

The size of beam envelope and transmission are shown

in Fig. 2 and Fig. 3 respectively. The output beam radius is

nearly 1.5 times greater than the input one because of this

fact. This result is acceptable. It is clear that main linac
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Figure 2: Beam envelope.
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Figure 3: Current transmission.

parameters choice based on proposed technique is rather

efficient to realize beam envelope (emittance) control.

SUMMARY

Beam dynamics model with regard for particles non-

coherent oscillations was made. Effective acceptance eval-

uation in terms of this model was evaluated. The necessary

restrictions on the linac parameters were imposed to make

beam matching at the output. The numerical simulations of

the self-consistent low-velocity heavy-ion beam dynamics

confirmed the analytical results obtained.
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