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Abstract

Microbunching instability (µBI) usually exists in the

LINAC of a free electron laser facility. If it is not well-

controlled, the beam quality will be seriously damaged and

the machine will not operate properly. In many cases,

the longitudinal space charge (LSC) is a dominant fac-

tor that generates the instability; therefore its contribu-

tion must be studied in details. The current model of the

LSC impedance [1] derived from the fundamental electro-

magnetic theory [2] has been widely used to explain the

physics of the LSC-induced µBI. [3] However, in the case

of highly bright electron beams, the plasma effect may also

play a role. In this article, the basic model of the LSC

impedance including the plasma effect is constructed by

solving Vlasov and Poisson equations in the 6-D phase

space, and preliminary investigation is carried out to study

the modification to the instability gain. The solution in-

dicates that the µBI gain depends not only on the spatial

information of the beam, but also on the velocity (momen-

tum) and time information. The comparison of the gains of

the µBI in the LINAC of Shanghai soft X-ray Free Elec-

tron Laser Facility (SXFEL) computed by various methods

is given and the discrepancy is illustrated.

INTRODUCTION

The possibility of oscillation in a plasma due to local

separation of charges and the consequent restoring forces

was discussed by J. D. Jackson long time ago. [4] The the-

ory is based on a neutral plasma, which has both the posi-

tively (ion) and negatively (electron) charged components.

For a charged particle beam in an accelerator, although it is

not neutral in terms of charges, there is still density fluctu-

ation due to the graininess of the individual particles — in

our case, the individual electrons. Such graininess is usu-

ally smoothed out in the fluid model and ignored in most

computations. In a highly intensive beam, however, it may

introduce the “plasma-like” oscillation (for convenience,

“plasma oscillation” is used hereafter), and must be inves-

tigated in details in order to reveal its magnitude and to

discover its physics. Similar discussions in the 2-D phase

space for this effects on the free electron laser have been

addressed by Kim, et. al. [5]

In this article, we start our discussions in the 6-D phase

space by employing Vlasov and Poisson (Gauss) equations,
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which describe the evolution of the distribution function

of the electron bunch and the electric field induced by the

charge distribution. We then use a method similar to Jack-

son’s [4] to linearize the Vlasov equation and obtain the

solution of the initial-value problem. The solution includes

the contributions from both the perturbed and unperturbed

parts of the initial distribution. As the result, the contribu-

tion from the velocity distribution is also included. From

the solution, we see that the plasma oscillation introduces

a “relative dielectric factor (permittivity)” ǫr, and also an

extra factor coming from the initial velocity distribution.

SOLUTION OF INITIAL-VALUE

PROBLEM

We carry out the investigations with the equations de-

scribing the evolution of beam distribution under the in-

fluence of the electromagnetic force. The discussion is in

laboratory frame hereafter. In cylindrical coordinates sys-

tem, the linearized Vlasov-Poisson equation and the Pois-

son (Gauss) equation can be written:

∂f1
∂t

+ vz
∂f1
∂z

+ v⊥
∂f1
∂r

−
eEz

γm

∂f0
∂vz

+
F⊥

γm

∂f0
∂v⊥

= 0, (1)

∂Ez

∂z
+

1

r

∂

∂r
(rEr) = −

e

ǫ0

∫

f1dvz, (2)

where −e is charge of an electron, f(t, ~r, ~v) = f0(t, ~r, ~v)+
f1(t, ~r, ~v), with f0 being the unperturbed background of

the beam and f1 the density perturbation due to plasma os-

cillation. We assume that f0, f1 and ~E have no azimuthal

dependence, which is reasonable. The Gauss’s law or Pois-

son equation, Eq. (2), will be solved in the particles’ rest

frame and then Lorentz transformed to the lab frame in the

next section.

Since the transverse velocity v⊥ is small, we can assume

vz ≈ v and F⊥ ≪ Fz . Then Eq. (1) simplifies to

∂f1
∂t

+ v
∂f1
∂z

−
eEz

γm

∂f0
∂v

= 0. (3)

Let us focus on Eqs. (3) and (2). Following Jackson, [4]

we perform Fourier transform in t and Laplace transform

in z on Eq. (3), and integrate by parts to obtain

∫

dz

[

e−ikz+iωtf1(v, z, t)

]t=∞

t=0

+

∫

∞

−∞

dz

∫

∞

0

e−ikz+iωtdt

×

[

(−iω + ikv)f1 −
e

γm

∂f0
∂v

E

]

= 0. (4)
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For ω in the upper half plane, the upper limit of the first

term on the right hand side of Eq. (4) vanishes as t → ∞.

We have then the solution in (v, ω, k) space,

f1(v, ω, k) =
1

i(kv − ω)

[

Φ(v, k) +
e

m

∂f0
∂v

E(ω, k)

]

,

(5)

where

Φ(v, k) =

∫

∞

−∞

dze−ikzf1(v, z, t = 0). (6)

Both Eq. (5) and Eq. (6) form the solution depending on

the initial-value of the density perturbation. If we perform

inverse Fourier transform on ω, we will obtain the density

perturbation f1(v, t, k) at later time, which represents the

time revolution of the density fluctuation. In the regular

LSC theory, the density fluctuation is neglected. However,

it will be taken into account under certain conditions in the

following discussions.

ELECTRIC FIELD INDUCED BY LSC

Based on the classical electromagnetic theory, the solu-

tion of Eq. (2) can be written as

Ez(~x) =
eλ

4πǫ0

∫

G(~x, ~x′)ρ(~x′)d3~x′, (7)

with the Green function

G(~x, ~x′)=
(z − z′)γ

[(x− x′)2+ (y − y′)2+ (z − z′)2γ2]3/2
. (8)

Here the same notations of Venturini’s [1] have been

used, with beam density λρ(x, y, z), uniform linear den-

sity λ, ρ(x, y, z) = ρ⊥(x, y)ρz(z), and normalization
∫

ρ⊥(x, y)dxdy = 1.

In cylindrical coordinates, the Green function can be ex-

panded as [2]

G(~x, ~x′) = −
i

πγ2

∞
∑

m=−∞

eim(φ−φ′)

∫

∞

−∞

kdkeik(z−z′)

× Im

(

kr<
γ

)

Km

(

kr>
γ

)

, (9)

where r< and r> denotes the smaller and larger between

r and r′, respectively, and Im and Km are the modified

Bessel function of the first and second kind. Thus the lon-

gitudinal electric field Ez in the k-space becomes

Ez(k) = i
e

4πǫ

λ

πγ2

∞
∑

m=−∞

∫

dV ′ρ(r′, φ′, z′)eim(φ−φ′)

× ke−ikz′

I<mK>
m. (10)

In our study, the unperturbed density distribution serves

as the smooth background, therefore it does not contribute

to the longitudinal electric field at all. For this reason, only

the perturbed one (Eq. (5)) plays a role. Assuming that the

beam is of radius rb and has a uniform transverse distribu-

tion f⊥ = 1/πr2b when r ≤ rb, we write the beam distribu-

tion as ρ(r, φ, z) = f⊥f1(v, z, t = 0). For an observation

point located on axis (only m = 0 term contributes), [1]

finally we obtain

E(ω, k) =
eλ

2πǫ0ǫrπr2b

∫

W

dv

×

∫

∞

−∞

dz
e−ikzf1(v, z, t = 0)

kv − ω

[

1− ξK1(ξ)
]

, (11)

where ξ = krb/γ, and

ǫr = k −
e2λ

2πǫ0γm

∫

W

∂f0
∂v

dv

kv − ω
(12)

is the relative dielectric factor (permittivity). The path of

integration W is from v = −∞ to ∞ passing below the

pole v = ω/k. This path comes from the analytic continu-

ity from the upper ω-half-plane to the whole ω-plane. In-

troducing the frequency of plasma oscillation in lab frame,

ωp =
√

e2λ/2πǫ0γm, Eq. (12) can be written as

ǫr = k − ω2
p

∫

W

∂f0
∂v

dv

kv − ω
. (13)

Equation (13) is also called the dispersion relation, it is

a function of the wavenumber k of the density fluctuation.

Equation (11) is the expression of the longitudinal electric

field induced by the LSC under the influence of density

fluctuation (plasma oscillation). Apparently, it includes the

contribution due to the velocity distribution of the beam.

In most of the cases, where the momentum and location

of the electron are decoupled, the perturbation can also be

written as f1(v, z, t = 0) = fv1(v, t = 0)fz1(z, t = 0).
Equation (11) becomes

E(ω, k) =
eλ

[

1− ξK1(ξ)
]

ǫ0ǫrπr2b

∫

W

dv
fv1(v, t = 0)

kv − ω

×
1

2π

∫

∞

−∞

e−ikzfz1(z, t = 0)dz. (14)

Equation (14) decouples the contributions from the beam

density distribution and velocity/momentum distribution.

INFLUENCE ON µBI

In this section, we start our preliminary discussions on

the effects of the modified LSC impedance in microbunch-

ing instability. As already known, the gain of µBI due to

the LSC impedance (linear in beam current) reads [6]

G = Ck|R56|
I0

γ0IA

|Z(k)|

Z0
exp

(

−
C2k2R2

56σ
2
γ

2γ2
0

)

, (15)

where C is the compression factor of a bunch compres-

sor (chicane), R56 is the transport matrix element of the

whole bunch compressor, and σr is the uncorrelated en-

ergy spread. In Eq. (15), one can see that the gain is pro-

portional to the absolute value of LSC impedance per unit

length Z(k).
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The impedance per unit length of the longitudinal space

charge is defined as

Z(k) = −Ez(k)/I(k), (16)

where I(k) is the Fourier transform of the beam current,

i.e., I(k) = ecλρz(k). Note that in our discussion ρz(k) =
(2π)−1

∫

e−ikzf1(z, t = 0)dz. Based on Eq. (14), we can

derive the LSC impedance in the existence of density fluc-

tuation:

Z(ω, k)=−
Z0

πγǫrrb

1−ξK1(ξ)

ξ

∫

W

f1(v, t=0)dv

kv − ω
. (17)

Comparing with the regular expression of the LSC

impedance without density fluctuation, [1, 3] we can see

that the difference comes from the relative dielectric factor

ǫr and the initial velocity perturbation f1(v, t = 0). More-

over, it is also a function of the oscillation frequency ω.

At this point, we believe that more investigations are

needed to obtain the exact picture of the development of

the µBI induced by the longitudinal space charge field. For

an example, assuming the Gaussian distribution of electron

velocity, and performing inverse Fourier transform on ω,

we will find the explicit time and wavelength dependence

of the microbunching instability.

In the proposed Shanghai X-ray Free Electron Laser Fa-

cility (SXFEL), [7] at the exit of the LINAC injector, the

momentum distribution is Gaussian-like (Fig. 1) and the

current profile is Gaussian with a number of small spikes,

i.e., initial modulation (Fig. 2). Although the numerical

simulation and analytic solution of the µBI gain at the exit

of LINAC are both not-so-significant, we can still see the

discrepancy between them (Fig. 3).

Figure 1: Beam momentum distribution at the exit of

SXFEL injector.

CONCLUSIONS

The electric field introduced by the longitudinal space

charge (LSC) with density fluctuation (plasma oscillation)

is studied in detail by solving the Vlasov and Poisson equa-

tions. Its influence on the LSC-induced microbunching in-

stability (µBI) is carried out. The preliminary investiga-

tion implicates that the gain curve of µBI does not depend

only on the spatial information of the beam, but also on the

beam’s momentum/velocity information as well. Further

study is ongoing to reveal the details of the development of

the LSC-induced µBI.

Figure 2: Current profile at the exit of SXFEL injector.
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Figure 3: (color) µBI gain at the exit of SXFEL LINAC

computed by different methods: ImpactZ simulation (red),

and analytic solution (blue).
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