Keyword: pick-up
Paper Title Other Keywords Page
SUPB014 RF Setup of the MedAustron RFQ rfq, resonance, simulation, ion 35
 
  • B. Koubek, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
  • J. Haeuser
    Kress GmbH, Biebergemuend, Germany
 
  A Radio Frequency Quadrupole (RFQ) was built for the injector of the cancer treatment facility MedAuston in Austria. For the RF design simulations were performed using CST Microwave Studio and the structure was manufactured by Firma Kress in Biebergemuend, Germany. The simulations and the RF setup of the delivered RFQ are presented in this paper.  
 
SUPB031 The Nonresonant Perturbation Theory Based Field Measurement and Tuning of a Linac Accelerating Structure linac, RF-structure, electromagnetic-fields, feedback 80
 
  • W. Fang, Q. Gu, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • D.C. Tong
    TUB, Beijing, People's Republic of China
 
  Assisted by the bead pull technique, the nonresonant perturbation theory is applied for measuring and tuning the field of the linac accelerating structure. The method is capable of making non-touch measurement, amplitude and phase diagnostics, real time mismatch feedback and field tuning. Main considerations on measurement system and of C-band traveling-wave structure are described, the bead pull measurement and the tuning of the C-band traveling-wave linac accelerating structure are presented.  
 
MOPB086 The Nonresonant Perturbation Theory Based Field Measurement and Tuning of a Linac Accelerating Structure linac, RF-structure, electromagnetic-fields, feedback 375
 
  • W. Fang, Q. Gu, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • D.C. Tong
    TUB, Beijing, People's Republic of China
 
  Assisted by the bead pull technique, the nonresonant perturbation theory is applied for measuring and tuning the field of the linac accelerating structure. The method is capable of making non-touch measurement, amplitude and phase diagnostics, real time mismatch feedback and field tuning. Main considerations on measurement system and of C-band traveling-wave structure are described, the bead pull measurement and the tuning of the C-band traveling-wave linac accelerating structure are presented.  
 
TUPB029 Beam Intensity and Energy Control for the SPIRAL2 Facility controls, linac, ion, rfq 537
 
  • C. Jamet, T.A. André, C. Doutresssoulles, B. Ducoudret, W. Le Coz, G. Ledu, S.L. Leloir, S. Loret
    GANIL, Caen, France
 
  The first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensity, up to 5mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control the intensity and the beam energy by non-interceptive methods at the linac exit. The beam current is measured by using couples of ACCT-DCCT installed along the lines and the beam energy by using a time of flight device. This paper gives explanations about the technical solutions, the results and resolutions for measuring and controlling the beam.  
 
TUPB081 Beam Diagnostics Development for Triumf E-Linac target, TRIUMF, diagnostics, electron 660
 
  • V.A. Verzilov, P.S. Birney, D.P. Cameron, J.V. Holek, S.Y. Kajioka, S. Kellogg, M. Lenckowski, M. Minato, W.R. Rawnsley
    TRIUMF, Vancouver, Canada
  • J.M. Abernathy, D. Karlen, D.W. Storey
    Victoria University, Victoria, B.C., Canada
 
  TRIUMF laboratory is currently in a phase of the construction of a new superconducting 50 MeV 10 mA cw electron linac (e-linac) to drive photo-fission based rare radioactive isotope beam (RIB) production. The project imposes certain technical challenges on various accelerator systems including beam diagnostics. In the first place these are a high beam power and strongly varying operating modes ranging from very short beam pulses to the cw regime. A number of development projects have been started to construct the diagnostics instrumentation required for commissioning and operation of the facility. The paper reports the present status of the projects along with measurement results obtained at the test facility which produced the first beam in Fall of 2011.  
 
TUPB102 Design and Performances of Phase Monitor in J-PARC Linac linac, acceleration, vacuum, impedance 699
 
  • A. Miura
    JAEA/J-PARC, Tokai-mura, Japan
  • Z. Igarashi, T. Miyao
    KEK, Ibaraki, Japan
 
  J-PARC linac employs a fast current transformer (FCT) as a beam phase monitor to calculate the beam energy by time-of-flight method. We have installed and used 61 FCTs in the current beam line. Because the phase measurements at additional 41 points in the future ACS sections are required for the energy upgrade project with adding 21 ACS (Annular Coupled Structure) cavities, we stared the design and fabrication of FCTs as the phase measurement devices. In addition, J-PARC linac employs the 4-stripline beam position monitors (BPMs) for the beam position measurement. It has been considered that the signals from striplines of BPM would be useful for a phase measurement. A phase measurement using a BPM has been successfully conducted. In order to evaluate the performances of the FCT, the signal sensitivity and cut-off frequency of newly fabricated FCT are measured. Also, these data of the BPM are also measured to be compared with the data of FCT. Based on the results of the comparing both measurements, the superiority of both monitors for beam phase measurement is discussed.  
 
THPLB08 High-Power RF Conditioning of the TRASCO RFQ rfq, cavity, controls, vacuum 828
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The TRASCO RFQ is designed to accelerate a 40 mA proton beam up to 5 MeV. It is a CW machine which has to show stable operation and provide the requested availability. It is composed of three electromagnetic segment coupled via two coupling cells. Each segment is divided into two 1.2 m long OFE copper modules. The RFQ is fed through eight loop-based power couplers to deliver RF to the cavity from a 352.2 MHZ, 1.3 MW klystron. After couplers conditioning, the first electromagnetic segment was successfully tested at full power. RFQ cavity reached the nominal 68 kV inter-vane voltage (1.8 Kilp.) in CW operation. Moreover, during conditioning in pulsed operation, it was possible to reach 83 kV inter-vane voltage (2.2 Kilp.) with a 1% duty cycle. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
slides icon Slides THPLB08 [1.384 MB]  
 
THPB040 High-Power RF Conditioning of the TRASCO RFQ rfq, cavity, controls, vacuum 945
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The TRASCO RFQ is designed to accelerate a 40 mA proton beam up to 5 MeV. It is a CW machine which has to show stable operation and provide the requested availability. It is composed of three electromagnetic segment coupled via two coupling cells. Each segment is divided into two 1.2 m long OFE copper modules. The RFQ is fed through eight loop-based power couplers to deliver RF to the cavity from a 352.2 MHZ, 1.3 MW klystron. After couplers conditioning, the first electromagnetic segment was successfully tested at full power. RFQ cavity reached the nominal 68 kV inter-vane voltage (1.8 Kilp.) in CW operation. Moreover, during conditioning in pulsed operation, it was possible to reach 83 kV inter-vane voltage (2.2 Kilp.) with a 1% duty cycle. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
 
THPB046 RF Setup of the MedAustron RFQ rfq, resonance, simulation, ion 957
 
  • B. Koubek, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
  • J. Haeuser
    Kress GmbH, Biebergemuend, Germany
 
  A Radio Frequency Quadrupole (RFQ) was built for the injector of the cancer treatment facility MedAuston in Austria. For the RF design simulations were performed using CST Microwave Studio and the structure was manufactured by Firma Kress in Biebergemuend, Germany. The simulations and the RF setup of the delivered RFQ are presented in this paper.