Keyword: monitoring
Paper Title Other Keywords Page
SUPB008 Specifications of the Distributed Timing System for the CLIC Main Linac luminosity, linac, collider, acceleration 16
 
  • A. Gerbershagen, A. Andersson, D. Schulte
    CERN, Geneva, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
  • F.Ö. Ilday
    Bilkent University, Bilkent, Ankara, Turkey
 
  The longitudinal phase stability of CLIC main and drive beams is a crucial element of CLIC design. In order to measure and to control the phase, a distributed phase monitoring system has been proposed. The system measures the beam phase every 900 m. The relative phase between the measurement points is synchronized with an external reference system via a chain of reference lines. This paper presents the simulations of error propagation in the proposed distributed monitoring system and the impact on the drive and main beam phase errors and the luminosity. Based on the results the error tolerances for the proposed system are detailed.  
 
MOPB033 High Power Coupler Test for TRIUMF E-linac SC Cavities vacuum, linac, TRIUMF, electron 246
 
  • A.K. Mitra, Z.T. Ang, S. Calic, P.R. Harmer, S.R. Koscielniak, R.E. Laxdal, W.R. Rawnsley, R.W. Shanks
    TRIUMF, Vancouver, Canada
 
  TRIUMF has been funded to build an electron linac with a final energy of 50 MeV and 500 kW beam power using TESLA type 9 cell superconducting cavities operating at 1.3 GHz at 2 Kelvin. The e-linac consists of an electron gun, buncher cavity, injector cryomodule, and two main-linac cryomodules. The injector module has one 9-cell cavity whereas each of the accelerating main-linac cryomodules contains two 9-cell cavities. It is scheduled to install the injector and one main accelerating cryomodule by 2014. Six power couplers, each rated for 60 kW cw, have been procured for three cavities. The injector cryomodule will be fed by a 30 kW cw inductive Output Tube (IOT) and the accelerating cryomodule will be powered by a 290 kW cw klystron. In order to install the power couplers in the cavities, they are to be assembled and conditioned with high power rf source. A power coupler test station has been built and tests of two power couplers have began. A 30 kW IOT has been commissioned to full output power and it will be used for the power coupler test. In this paper, test results of the rf conditioning of the power couplers under pulse and cw mode will be described.  
 
MOPB045 Specifications of the Distributed Timing System for the CLIC Main Linac luminosity, linac, collider, acceleration 273
 
  • A. Gerbershagen, A. Andersson, D. Schulte
    CERN, Geneva, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
  • F.Ö. Ilday
    Bilkent University, Bilkent, Ankara, Turkey
 
  The longitudinal phase stability of CLIC main and drive beams is a crucial element of CLIC design. In order to measure and to control the phase, a distributed phase monitoring system has been proposed. The system measures the beam phase every 900 m. The relative phase between the measurement points is synchronized with an external reference system via a chain of reference lines. This paper presents the simulations of error propagation in the proposed distributed monitoring system and the impact on the drive and main beam phase errors and the luminosity. Based on the results the error tolerances for the proposed system are detailed.  
 
TUPB084 High Dynamic-Range High Speed Linac Current Measurements linac, neutron, injection, feedback 666
 
  • C. Deibele
    ORNL, Oak Ridge, Tennessee, USA
  • D. Curry, R. Dickson
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure risetimes on the order of 10 nanoseconds.