Keyword: free-electron-laser
Paper Title Other Keywords Page
SUPB032 The C-band RF Pulse Compression for Soft XFEL at SINAP cavity, coupling, simulation, klystron 83
 
  • C.P. Wang, Q. Gu, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  A compact soft X-ray free electron laser facility is presently being constructed at shanghai institute of applied physics (SINAP), Chinese academy of science in 2012 and will be accomplished in 2014. This facility requires a compact linac with a high-gradient accelerating structure for a limited overall length less than 230 m. The c-band technology which is already used in KEK/Spring-8 linear accelerator is a good compromise for this compact facility and a c-and traveling-wave accelerating structure was already fabricated and tested at SINAP, so a c-band pulse compression will be required. AND a SLED type RF compression scheme is proposed for the C-band RF system of the soft XFEL and this scheme uses TE0.1.15 mode energy storage cavity for high Q-energy storage. The C-band pulse compression under development at SINAP has a high power gain about 3.1 and it is designed to compress the pulse width from 2.5 μs to 0.5 μs and multiply the input RF power of 50 MW to generate 160 MW peak RF power, and the coupling coefficient will be 8.5. It has three components: 3 dB coupler, mode convertors and the resonant cavities.  
 
MOPB005 High Gradient Operation of 8 GeV C-Band Accelerator in SACLA acceleration, laser, electron, klystron 186
 
  • T. Inagaki, C. Kondo, Y. Otake, T. Sakurai
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  SACLA (SPring-8 angstrom compact free electron laser) is the X-ray free electron laser (XFEL) facility. In order to shorten the 8 GeV accelerator length, a C-band (5712 MHz) accelerator was employed. Since the accelerating gradient of C-band accelerating structure is 35 MV/m in nominal, the active accelerator length is 230 m. In total, 64 klystrons, 64 pulse compressors, and 128 accelerating structures are used. In order to withstand the high surface field (~ 100 MV/m), and to reduce the amount of dark current, which decreases the demagnetization effect of undulators, the accelerating structures are carefully fabricated in the factory. After high power RF conditioning of 500 hours, the beam commissioning was started in February 2011. For night time of the commissioning, we continued the RF conditioning. The RF breakdown rate of the structure was steadily decreased. Now we operate the accelerator with the beam energy as much as 8.3 GeV, and the accelerating gradient of 37 MV/m in average. We found the amount of dark current is small enough. So far no trouble occurred in C-band RF components of 64 sets.  
 
TUPB097 The C-band RF Pulse Compression for Soft XFEL at SINAP cavity, coupling, simulation, klystron 687
 
  • C.P. Wang, Q. Gu, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  A compact soft X-ray free electron laser facility is presently being constructed at shanghai institute of applied physics (SINAP), Chinese academy of science in 2012 and will be accomplished in 2014. This facility requires a compact linac with a high-gradient accelerating structure for a limited overall length less than 230 m. The c-band technology which is already used in KEK/Spring-8 linear accelerator is a good compromise for this compact facility and a c-and traveling-wave accelerating structure was already fabricated and tested at SINAP, so a c-band pulse compression will be required. AND a SLED type RF compression scheme is proposed for the C-band RF system of the soft XFEL and this scheme uses TE0.1.15 mode energy storage cavity for high Q-energy storage. The C-band pulse compression under development at SINAP has a high power gain about 3.1 and it is designed to compress the pulse width from 2.5 μs to 0.5 μs and multiply the input RF power of 50 MW to generate 160 MW peak RF power, and the coupling coefficient will be 8.5. It has three components: 3 dB coupler, mode convertors and the resonant cavities.  
 
THPB089 Magnetic Characterization of the Phase Shifter Prototypes Built by CIEMAT for E-XFEL undulator, electron, laser, FEL 1029
 
  • I. Moya, J. Calero, J.M. Cela-Ruiz, L. García-Tabarés, A. Guirao, J.L. Gutiérrez, L.M. Martinez, T. Martínez de Alvaro, E. Molina Marinas, L. Sanchez, S. Sanz, F. Toral, C. Vázquez, J.G.S. de la Gama
    CIEMAT, Madrid, Spain
  • J. Campmany, J. Marcos, V. Massana
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under SEI Resolution on 17-September-2009 and project ref. AIC-2010-A-000524
The European X-ray Free Electron Laser (E-XFEL) will be based on a 10 to 17.5 GeV electron linac that will be used in the undulator system to obtain ultra-brilliant X-ray flashes from 0.1 to 6 nanometres for experimentation. The undulator system is formed by undulators and intersections between them, where a quadrupole on top of a precision mover, a beam position monitor, two air coils and a phase shifter are allocated. The function of the phase shifter is to adjust the phase of the electron beam and the radiation when they enter in an undulator according to the different beam energies and wavelengths. CIEMAT is working on the development of the phase shifters, as part of the Spanish in-kind contribution to the E-XFEL project. Several problems reported elsewhere were detected in the first prototype, which did not fulfil the first field integral specification. This paper describes the magnetic measurements realized on the second and third prototypes in the test bench at CELLS, together with the tuning process to decrease the field integral dependence with gap.