Author: Zhao, M.H.
Paper Title Page
SUPB006 Study of Beam-Based Alignment for Shanghai Soft X-Ray FEL Facility 10
 
  • D. Gu, Q. Gu, D. Huang, M. Zhang, M.H. Zhao
    SINAP, Shanghai, People's Republic of China
 
  In linear accelerators, dispersion caused by quadrupole misalignment and transverse wake-field effect caused by alignment errors of accelerate structures will lead to a significant emittance growth. There are more stringent restrictions on SXFEL, the traditional optical alignment can no longer meet its requirements, but the Beam-Based Alignment(BBA) method allows more precise alignment, further reduce the Linac errors to meet SXFEL requirements .In undulator sections, orbit changes are not only caused by misalignments of quadrupole magnet position ,but also the errors of undulator magnetic. In order to achieve alignment accuracy over longer distance, we measuring BPM data under different conditions and using SVD algorithm for calculation and analysis, we can get the quadrupole magnet errors and BPM offset. With the method above, software based on MATLAB has been designed and compared the results with other software.  
 
TUPB018 Study of Beam-Based Alignment for Shanghai Soft X-Ray FEL Facility 513
 
  • D. Gu, Q. Gu, D. Huang, M. Zhang, M.H. Zhao
    SINAP, Shanghai, People's Republic of China
 
  In linear accelerators, dispersion caused by quadrupole misalignment and transverse wake-field effect caused by alignment errors of accelerate structures will lead to a significant emittance growth. There are more stringent restrictions on SXFEL, the traditional optical alignment can no longer meet its requirements, but the Beam-Based Alignment(BBA) method allows more precise alignment, further reduce the Linac errors to meet SXFEL requirements .In undulator sections, orbit changes are not only caused by misalignments of quadrupole magnet position ,but also the errors of undulator magnetic. In order to achieve alignment accuracy over longer distance, we measuring BPM data under different conditions and using SVD algorithm for calculation and analysis, we can get the quadrupole magnet errors and BPM offset. With the method above, software based on MATLAB has been designed and compared the results with other software.  
 
TUPB022 A Passive Linearizer for Bunch Compression 525
 
  • Q. Gu, M. Zhang, M.H. Zhao
    SINAP, Shanghai, People's Republic of China
 
  In high gain free electron laser (FEL) facility design and operation, a high bunch current is required to get lasing with a reasonable gain length. Because of the current limitation of the electron source due to the space charge effect, a compression system is commonly used to compress the electron beam to the exact current needed. Before the bunch compression, the nonlinear energy spread due to the finite bunch length should be compensated; otherwise the longitudinal profile of bunch will be badly distorted. Usually an X band accelerating structure is used to compensate the nonlinear energy spread while decelerating the beam. For UV FEL facility, the X band system is too expensive comparing to the whole facility. In this paper, we present a corrugated structure as a passive linearizer, and the preliminary study of the beam dynamics is also shown.