Author: Vossberg, M.
Paper Title Page
THPLB03 Front-End Linac Design and Beam Dynamics Simulations for MYRRHA 813
 
  • C. Zhang, H. Klein, D. Mäder, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede, M. Vossberg
    IAP, Frankfurt am Main, Germany
 
  Funding: Funded by the European Atomic Energy Community’s (Euratom) 7th Framework Programme under Grant Agreement n°269565.
A 17MeV, 176MHz, and CW (Continuous Wave) proton linac is being developed as the front end of the driver accelerator for the MYRRHA facility in Mol, Belgium. Based on the promising preliminary design, further simulation and optimization studies have been performed with respect to code benchmarking, RFQ simulation using realistic LEBT output distributions, and an updated CH-DTL design with more detailed inter-tank configurations. This paper summarizes the new results.
 
slides icon Slides THPLB03 [1.292 MB]  
 
THPB005 Front-End Linac Design and Beam Dynamics Simulations for MYRRHA 849
 
  • C. Zhang, H. Klein, D. Mäder, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede, M. Vossberg
    IAP, Frankfurt am Main, Germany
 
  Funding: Funded by the European Atomic Energy Community’s (Euratom) 7th Framework Programme under Grant Agreement n°269565.
A 17MeV, 176MHz, and CW (Continuous Wave) proton linac is being developed as the front end of the driver accelerator for the MYRRHA facility in Mol, Belgium. Based on the promising preliminary design, further simulation and optimization studies have been performed with respect to code benchmarking, RFQ simulation using realistic LEBT output distributions, and an updated CH-DTL design with more detailed inter-tank configurations. This paper summarizes the new results.
 
 
THPB047 Test RFQ for the MAX Project 960
 
  • M. Vossberg, H. Klein, H. Podlech, A. Schempp, C. Zhang
    IAP, Frankfurt am Main, Germany
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
 
  As a part of the MAX project it will be demonstrated by simulations and thermal measurements, that a 4-rod-RFQ is the right choice even at cw-operation. A 4-rod Test-RFQ with a resonance frequency of 175 MHz has been designed and built for the MAX-Project. But the RFQ had to be modified to solve the cooling problem at cw-operation, the geometrical precision had to be improved as well as the rf-contacts. The developments led to a new layout and a sophisticated production procedure of the stems and the electrodes. Calculations show an improved Rp-value leading to powerlosses of ca. 25 kW/m only, which is about half of the powerlosses which could be achieved safely at cw-operation of the similar Saraf-RFQ. Thermal measurements and simulations with the single components are in progress. The temperature distribution in cw-operation will be measured and the rf-performance checked.