Author: Volk, K.
Paper Title Page
MO3A03 FRANZ – Accelerator Test Bench and Neutron Source 130
 
  • O. Meusel, L.P. Chau, M. Heilmann, H. Podlech, U. Ratzinger, K. Volk, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  The challenge of existing and planned neutron sources is to provide highly brilliant ion beams with high reliability. The Frankfurt neutron source FRANZ is not only a neutron source but also a test bench for novel accelerator and diagnostic concepts for intense ion beams. The experiment consists of a compact linear accelerator test bench for the acceleration of an intense proton beam to 2 MeV producing the neutrons via the 7Li(p,n) reaction. The final beam intensity will be 200 mA, therefore the space charge and space charge compensation effects can be studied with high statistical relevance along the accelerator. The low energy beam transport LEBT is equipped with four solenoids matching the beam into the chopper system and into the RFQ-IH combination already under construction. The coupling of the RFQ accelerator stage and the IH drift tube cavity offers the possibility to use only one power amplifier as a driver for both of these resonators and reduces investment costs. The compact design of this low-β accelerator stage is optimized for high beam intensities to overcome the strong space charge forces expected in this accelerator test bench.  
 
THPB007 A Pulsed Linac Front-end for ADS Applications 855
 
  • U. Ratzinger, H. Podlech, A. Schempp, K. Volk
    IAP, Frankfurt am Main, Germany
  • U. Hagen, O. Heid, T.J.S. Hughes
    Siemens AG, Erlangen, Germany
  • H. Hoeltermann
    BEVATECH OHG, Offenbach/Main, Germany
 
  Quite a number of projects worldwide develop proton driver linacs for neutron sources and other accelerator driven systems. One trend is to use a high duty factor and superconducting cavities as much as possible. Alternatively, one can aim on short duty factor and count on a continuing rapid development of pulsed rf amplifiers based on power transistor technology. A 500 mA, 5 % duty factor layout of a proton injector is presented, consisting of a filament driven volume ion source, of a 150 keV transport section and of a 4 m long 162 MHz RFQ up to 2 MeV beam energy. Beam dynamics results as well as the technical design will be shown.