Author: Schempp, A.
Paper Title Page
SUPB014 RF Setup of the MedAustron RFQ 35
 
  • B. Koubek, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
  • J. Haeuser
    Kress GmbH, Biebergemuend, Germany
 
  A Radio Frequency Quadrupole (RFQ) was built for the injector of the cancer treatment facility MedAuston in Austria. For the RF design simulations were performed using CST Microwave Studio and the structure was manufactured by Firma Kress in Biebergemuend, Germany. The simulations and the RF setup of the delivered RFQ are presented in this paper.  
 
SUPB017 Tuning Studies on 4-rod-RFQs 44
 
  • J.S. Schmidt, B. Klump, B. Koubek, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  A NI LabVIEW based Tuning Software has been devel- oped to structure the tuning process of 4-rod Radio Fre- quency Quadrupole s (RFQs). Its results are compared to measurement data of 4-rod RFQs in different frequency ranges. For the optimization of RFQ design parameters, a certain voltage distribution along the electrodes of an RFQ is assumed. Therefore an accurate tuning of the voltage distribution is very important for the beam dynamic prop- erties of an RFQ. A variation can lead to particle losses and reduced beam quality especially at higher frequencies. Our electrode design usually implies a constant longitudi- nal voltage distribution. For its adjustment tuning plates are used between the stems of the 4-rod-RFQ. These pre- dictions are based, in contrast to other simulations, on mea- surements to define the characteristics of the RFQ as it was build - not depending on assumptions of the design. This will lead to a totally new structured process of tuning 4- rod-RFQs in a broad range of frequencies by using the pre- dictions of a software. The results of these studies are pre- sented in this paper.  
 
THPLB03 Front-End Linac Design and Beam Dynamics Simulations for MYRRHA 813
 
  • C. Zhang, H. Klein, D. Mäder, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede, M. Vossberg
    IAP, Frankfurt am Main, Germany
 
  Funding: Funded by the European Atomic Energy Community’s (Euratom) 7th Framework Programme under Grant Agreement n°269565.
A 17MeV, 176MHz, and CW (Continuous Wave) proton linac is being developed as the front end of the driver accelerator for the MYRRHA facility in Mol, Belgium. Based on the promising preliminary design, further simulation and optimization studies have been performed with respect to code benchmarking, RFQ simulation using realistic LEBT output distributions, and an updated CH-DTL design with more detailed inter-tank configurations. This paper summarizes the new results.
 
slides icon Slides THPLB03 [1.292 MB]  
 
THPB005 Front-End Linac Design and Beam Dynamics Simulations for MYRRHA 849
 
  • C. Zhang, H. Klein, D. Mäder, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede, M. Vossberg
    IAP, Frankfurt am Main, Germany
 
  Funding: Funded by the European Atomic Energy Community’s (Euratom) 7th Framework Programme under Grant Agreement n°269565.
A 17MeV, 176MHz, and CW (Continuous Wave) proton linac is being developed as the front end of the driver accelerator for the MYRRHA facility in Mol, Belgium. Based on the promising preliminary design, further simulation and optimization studies have been performed with respect to code benchmarking, RFQ simulation using realistic LEBT output distributions, and an updated CH-DTL design with more detailed inter-tank configurations. This paper summarizes the new results.
 
 
THPB007 A Pulsed Linac Front-end for ADS Applications 855
 
  • U. Ratzinger, H. Podlech, A. Schempp, K. Volk
    IAP, Frankfurt am Main, Germany
  • U. Hagen, O. Heid, T.J.S. Hughes
    Siemens AG, Erlangen, Germany
  • H. Hoeltermann
    BEVATECH OHG, Offenbach/Main, Germany
 
  Quite a number of projects worldwide develop proton driver linacs for neutron sources and other accelerator driven systems. One trend is to use a high duty factor and superconducting cavities as much as possible. Alternatively, one can aim on short duty factor and count on a continuing rapid development of pulsed rf amplifiers based on power transistor technology. A 500 mA, 5 % duty factor layout of a proton injector is presented, consisting of a filament driven volume ion source, of a 150 keV transport section and of a 4 m long 162 MHz RFQ up to 2 MeV beam energy. Beam dynamics results as well as the technical design will be shown.  
 
THPB008 A Coupled RFQ-IH Cavity for the Neutron Source FRANZ 858
 
  • M. Heilmann, O. Meusel, D. Mäder, U. Ratzinger, A. Schempp, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The Frankfurt neutron source FRANZ will deliver neutrons in the energy range from 1 to 500 keV with high pulsed intensities. A 2 MeV proton beam will produce protons via the 7Li(p,n)7Be reaction. The 175 MHz accelerator cavity consists of a 4-rod-RFQ coupled with an 8 gap interdigital H-type drift tube section, the total cavity length being 2.3m. The combined cavity will be powered by one RF amplifier to reduce investment and operation costs. The inductive power coupler will be at the RFQ part. The coupling into the IH - section is provided through a large aperture - mainly inductively. By CST - MWS - simulations as well as by an RF - model the voltage tuning along the cavity was investigated, and with special care the balance between both cavity sections. A first set of RFQ electrodes should allow to reach beam currents up to 50 mA in cw operation: The beam is pulsed with 100 ns, 250 kHz, while the cavity has to be operated cw due to the high rep. rate. The layout of the cavity cooling aims on a maximum accessible heat load of 200 kW.  
 
THPB046 RF Setup of the MedAustron RFQ 957
 
  • B. Koubek, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
  • J. Haeuser
    Kress GmbH, Biebergemuend, Germany
 
  A Radio Frequency Quadrupole (RFQ) was built for the injector of the cancer treatment facility MedAuston in Austria. For the RF design simulations were performed using CST Microwave Studio and the structure was manufactured by Firma Kress in Biebergemuend, Germany. The simulations and the RF setup of the delivered RFQ are presented in this paper.  
 
THPB047 Test RFQ for the MAX Project 960
 
  • M. Vossberg, H. Klein, H. Podlech, A. Schempp, C. Zhang
    IAP, Frankfurt am Main, Germany
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
 
  As a part of the MAX project it will be demonstrated by simulations and thermal measurements, that a 4-rod-RFQ is the right choice even at cw-operation. A 4-rod Test-RFQ with a resonance frequency of 175 MHz has been designed and built for the MAX-Project. But the RFQ had to be modified to solve the cooling problem at cw-operation, the geometrical precision had to be improved as well as the rf-contacts. The developments led to a new layout and a sophisticated production procedure of the stems and the electrodes. Calculations show an improved Rp-value leading to powerlosses of ca. 25 kW/m only, which is about half of the powerlosses which could be achieved safely at cw-operation of the similar Saraf-RFQ. Thermal measurements and simulations with the single components are in progress. The temperature distribution in cw-operation will be measured and the rf-performance checked.  
 
THPB049 Tuning Studies on 4-Rod-RFQs 963
 
  • J.S. Schmidt, B. Klump, B. Koubek, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  A NI LabVIEW based Tuning Software has been devel- oped to structure the tuning process of 4-rod Radio Fre- quency Quadrupole s (RFQs). Its results are compared to measurement data of 4-rod RFQs in different frequency ranges. For the optimization of RFQ design parameters, a certain voltage distribution along the electrodes of an RFQ is assumed. Therefore an accurate tuning of the voltage distribution is very important for the beam dynamic prop- erties of an RFQ. A variation can lead to particle losses and reduced beam quality especially at higher frequencies. Our electrode design usually implies a constant longitudi- nal voltage distribution. For its adjustment tuning plates are used between the stems of the 4-rod-RFQ. These pre- dictions are based, in contrast to other simulations, on mea- surements to define the characteristics of the RFQ as it was build - not depending on assumptions of the design. This will lead to a totally new structured process of tuning 4- rod-RFQs in a broad range of frequencies by using the pre- dictions of a software. The results of these studies are pre- sented in this paper.  
 
THPB034 Status of the FAIR 70 MeV Proton Linac 927
 
  • L. Groening, W.A. Barth, R. Berezov, G. Clemente, P. Forck, R. Hollinger, A. Krämer, C. Mühle, J. Pfister, G. Schreiber, J. Trüller, W. Vinzenz, C. Will
    GSI, Darmstadt, Germany
  • N. Chauvin, O. Delferrière, O. Tuske
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
  • B. Launé, J. Lesrel
    IPN, Orsay, France
  • C.S. Simon
    CEA/DSM/IRFU, France
 
  To provide the primary proton beam for the FAIR anti-proton research program, a 70 MeV, 70 mA linac is currently under design & construction at GSI. The nc machine comprises an ECR source, a 3 MeV RFQ, and a DTL based on CH-cavities. Up to 36 MeV pairs of rf-coupled cavities (CCH) are used. A prototype cavity has been built and is prepared for high power rf-testing. An overview of the status as well as on the perspectives of the project is given.