Author: Rawnsley, W.R.
Paper Title Page
MOPB033 High Power Coupler Test for TRIUMF E-linac SC Cavities 246
 
  • A.K. Mitra, Z.T. Ang, S. Calic, P.R. Harmer, S.R. Koscielniak, R.E. Laxdal, W.R. Rawnsley, R.W. Shanks
    TRIUMF, Vancouver, Canada
 
  TRIUMF has been funded to build an electron linac with a final energy of 50 MeV and 500 kW beam power using TESLA type 9 cell superconducting cavities operating at 1.3 GHz at 2 Kelvin. The e-linac consists of an electron gun, buncher cavity, injector cryomodule, and two main-linac cryomodules. The injector module has one 9-cell cavity whereas each of the accelerating main-linac cryomodules contains two 9-cell cavities. It is scheduled to install the injector and one main accelerating cryomodule by 2014. Six power couplers, each rated for 60 kW cw, have been procured for three cavities. The injector cryomodule will be fed by a 30 kW cw inductive Output Tube (IOT) and the accelerating cryomodule will be powered by a 290 kW cw klystron. In order to install the power couplers in the cavities, they are to be assembled and conditioned with high power rf source. A power coupler test station has been built and tests of two power couplers have began. A 30 kW IOT has been commissioned to full output power and it will be used for the power coupler test. In this paper, test results of the rf conditioning of the power couplers under pulse and cw mode will be described.  
 
MOPB026 TRIUMF/VECC e-Linac Injector Beam Test 231
 
  • R.E. Laxdal, F. Ames, Y.-C. Chao, K. Fong, C. Gong, A. Laxdal, M. Marchetto, W.R. Rawnsley, S. Saminathan, V.A. Verzilov, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • J.M. Abernathy, D. Karlen, D.W. Storey
    Victoria University, Victoria, B.C., Canada
  • A. Chakrabarti, V. Naik
    VECC, Kolkata, India
 
  TRIUMF is collaborating with VECC on the design of a 10 MeV injector cryomodule to be used as a front end for a high intensity electron linac. A electron gun and low energy beam transport (LEBT) have been installed in a test area to act as the injector for the cryomodule test. The LEBT includes a wide variety of diagnostics to fully characterize the beam from the gun. A series of beam tests are being conducted during the stage installation. The test configuration details and results of beam tests will be presented.  
 
MOPB091 The Injector Cryomodule for the ARIEL e-Linac at TRIUMF 389
 
  • R.E. Laxdal, A. Koveshnikov, N. Muller, W.R. Rawnsley, G. Stanford, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • M. Ahammed, M. Mondrel
    VECC, Kolkata, India
 
  The ARIEL project at TRIUMF includes a 50 MeV-10 mA electron linear accelerator (e-Linac) using 1.3 GHz superconducting technology. The accelerator is divided into three cryomodules including a single cavity injector cryomodule (ICM) and two accelerating cryomodules with two cavities each. The ICM is being built first. The ICM utilizes a unique top-loading box vacuum vessel. The shape allows the addition of a 4 K/2 K cryogenic unit that accepts near atmospheric LHe and converts to 2 K liquid inside the cryomodule. The cryomodule design is complete and in fabrication. The 4 K/2 K cryogenic unit has been assembled and tested in a test cryostat. The paper will describe the design of the cryomodule and the results of the cryogenic tests.  
 
TUPB081 Beam Diagnostics Development for Triumf E-Linac 660
 
  • V.A. Verzilov, P.S. Birney, D.P. Cameron, J.V. Holek, S.Y. Kajioka, S. Kellogg, M. Lenckowski, M. Minato, W.R. Rawnsley
    TRIUMF, Vancouver, Canada
  • J.M. Abernathy, D. Karlen, D.W. Storey
    Victoria University, Victoria, B.C., Canada
 
  TRIUMF laboratory is currently in a phase of the construction of a new superconducting 50 MeV 10 mA cw electron linac (e-linac) to drive photo-fission based rare radioactive isotope beam (RIB) production. The project imposes certain technical challenges on various accelerator systems including beam diagnostics. In the first place these are a high beam power and strongly varying operating modes ranging from very short beam pulses to the cw regime. A number of development projects have been started to construct the diagnostics instrumentation required for commissioning and operation of the facility. The paper reports the present status of the projects along with measurement results obtained at the test facility which produced the first beam in Fall of 2011.