Author: Morris, D.
Paper Title Page
MOPLB10 FRIB Technology Demonstration Cryomodule Test 165
 
  • J. Popielarski, E.C. Bernard, S. Bricker, S. Chouhan, C. Compton, A. Facco, A. Fila, L.L. Harle, M. Hodek, L. Hodges, S. Jones, M. Leitner, D. R. Miller, S.J. Miller, D. Morris, R. Oweiss, J.P. Ozelis, L. Popielarski, K. Saito, N.R. Usher, J. Weisend, Y. Zhang, S. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
  • M. Klaus
    Technische Universität Dresden, Dresden, Germany
 
  A Technology Demonstration Cryomodule (TDCM) has been developed for a systems test of technology being developed for FRIB. The TDCM consists of two half wave resonators (HWRs) which have been designed for an optimum velocity of β=v/c=0.53 and a resonant frequency of 322 MHz. The resonators operate at 2 K. A superconducting 9 T solenoid is placed in close proximity to one of the installed HWRs. The 9 T solenoid operates at 4 K. A complete systems test of the cavities, magnets, and all ancillary components is presented in this paper.
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
 
slides icon Slides MOPLB10 [2.530 MB]  
 
MOPB090 FRIB Technology Demonstration Cryomodule Test 386
 
  • J. Popielarski, E.C. Bernard, S. Bricker, S. Chouhan, C. Compton, A. Facco, A. Fila, L.L. Harle, M. Hodek, L. Hodges, S. Jones, M. Leitner, D. R. Miller, S.J. Miller, D. Morris, R. Oweiss, J.P. Ozelis, L. Popielarski, K. Saito, N.R. Usher, J. Weisend, Y. Zhang, S. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
  • M. Klaus
    Technische Universität Dresden, Dresden, Germany
 
  A Technology Demonstration Cryomodule (TDCM) has been developed for a systems test of technology being developed for FRIB. The TDCM consists of two half wave resonators (HWRs) which have been designed for an optimum velocity of β=v/c=0.53 and a resonant frequency of 322 MHz. The resonators operate at 2 K. A superconducting 9 T solenoid is placed in close proximity to one of the installed HWRs. The 9 T solenoid operates at 4 K. A complete systems test of the cavities, magnets, and all ancillary components is presented in this paper.
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
 
 
TU1A04 FRIB Accelerator Status and Challenges 417
 
  • J. Wei, E.C. Bernard, N.K. Bultman, F. Casagrande, S. Chouhan, C. Compton, K.D. Davidson, A. Facco, P.E. Gibson, T . Glasmacher, K. Holland, M.J. Johnson, S. Jones, D. Leitner, M. Leitner, G. Machicoane, F. Marti, D. Morris, J.P. Ozelis, S. Peng, J. Popielarski, L. Popielarski, E. Pozdeyev, T. Russo, K. Saito, R.C. Webber, M. Williams, Y. Yamazaki, A. Zeller, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
  • D. Arenius, V. Ganni
    JLAB, Newport News, Virginia, USA
  • J.A. Nolen
    ANL, Argonne, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) at MSU includes a driver linac that can accelerate all stable isotopes to energies beyond 200 MeV/u at beam powers up to 400 kW. The linac consists of 330 superconducting quarter- and half-wave resonators operating at 2 K temperature. Physical challenges include acceleration of multiple charge states of beams to meet beam-on-target requirements, efficient production and acceleration of intense heavy-ion beams from low to intermediate energies, accommodation of multiple charge stripping scenarios (liquid lithium, helium gas, and carbon foil) and ion species, designs for both baseline in-flight fragmentation and ISOL upgrade options, and design considerations of machine availability, tunability, reliability, maintainability, and upgradability. We report on the FRIB accelerator design and developments with emphasis on technical challenges and progress.
 
slides icon Slides TU1A04 [4.531 MB]