Author: Michizono, S.
Paper Title Page
SUPB024 Development of Permanent Magnet Focusing System for Klystrons 62
 
  • Y. Fuwa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, S. Michizono
    KEK, Ibaraki, Japan
 
  The Distributed RF System (DRFS) for the International Linear Collider (ILC) requires thousands of klystrons. The failure rate of the power supply for solenoid focusing coil of each klystron may be a critical issue for a regular operation of the ILC. A permanent magnet beam focusing system can increase reliability and eliminate their power consumption. Since the required magnetic field is not high in this system, inexpensive anisotropic ferrite magnets can be used instead of magnets containing rare earth materials. In order to prove its feasibility, a test model of a permanent magnet focusing beam system is constructed and a power test of the klystron for DRFS with this model is under preparation. The results of magnetic field distribution measurement and the power test will be presented.  
 
MOPLB02 Positron Injector Linac Upgrade for SuperKEKB 141
 
  • T. Kamitani, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, S. Fukuda, K. Furukawa, Y. Higashi, T. Higo, H. Honma, N. Iida, M. Ikeda, E. Kadokura, K. Kakihara, H. Katagiri, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, T. Mori, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, S. Ohsawa, M. Satoh, T. Shidara, A. Shirakawa, H. Sugimoto, T. Suwada, T. Takatomi, T. Takenaka, Y. Yano, K. Yokoyama, M. Yoshida, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  The KEKB B-factory is under an upgrade construction for the SuperKEKB. To achieve 40 times higher luminosity, the linac is required to inject electrons and positrons with higher intensities (e-: 1 nC → 5 nC, e+: 1 nC → 4 nC) and lower emittances (e-: 300 → 20 μm, e+: 2100 → 10 μm). This paper describes the upgrade scheme of the positron source. A new positron capture section will have larger transverse and energy acceptances by introducing a flux concentrator and large aperture L-band and S-band accelerating structures. Beam line layout and quadrupole focusing system will be rearranged for the enlarged beam acceptance. Beam optics is designed to be compatible for positron and electron beams with different energies and emittances. Pulsed quadrupoles and steering magnets are added for better flexibility in optics and orbit tuning. Parameter optimization of the positron source by optics calculation and particle tracking simulation is described.  
slides icon Slides MOPLB02 [0.575 MB]  
 
MOPB002 Positron Injector Linac Upgrade for SuperKEKB 177
 
  • T. Kamitani, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, S. Fukuda, K. Furukawa, Y. Higashi, T. Higo, H. Honma, N. Iida, M. Ikeda, E. Kadokura, K. Kakihara, H. Katagiri, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, T. Mori, K. Nakao, T. Natsui, Y. Ogawa, S. Ohsawa, T. Shidara, A. Shirakawa, H. Sugimoto, T. Suwada, T. Takatomi, T. Takenaka, Y. Yano, K. Yokoyama, M. Yoshida, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  The KEKB B-factory is under an upgrade construction for the SuperKEKB. To achieve 40 times higher luminosity, the linac is required to inject electrons and positrons with higher intensities (e-: 1 nC → 5 nC, e+: 1 nC → 4 nC) and lower emittances (e-: 300 → 20 μm, e+: 2100 → 10 μm). This paper describes the upgrade scheme of the positron source. A new positron capture section will have larger transverse and energy acceptances by introducing a flux concentrator and large aperture L-band and S-band accelerating structures. Beam line layout and quadrupole focusing system will be rearranged for the enlarged beam acceptance. Beam optics is designed to be compatible for positron and electron beams with different energies and emittances. Pulsed quadrupoles and steering magnets are added for better flexibility in optics and orbit tuning. Parameter optimization of the positron source by optics calculation and particle tracking simulation is described.  
 
TUPLB12 Development of Permanent Magnet Focusing System for Klystrons 470
 
  • Y. Fuwa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, S. Michizono
    KEK, Ibaraki, Japan
 
  The Distributed RF System (DRFS) for the International Linear Collider (ILC) requires thousands of klystrons. The failure rate of the power supply for solenoid focusing coil of each klystron may be a critical issue for a regular operation of the ILC. A permanent magnet beam focusing system can increase reliability and eliminate their power consumption. Since the required magnetic field is not high in this system, inexpensive anisotropic ferrite magnets can be used instead of magnets containing rare earth materials. In order to prove its feasibility, a test model of a permanent magnet focusing beam system is constructed and a power test of the klystron for DRFS with this model is under preparation. The results of magnetic field distribution measurement and the power test will be presented.  
slides icon Slides TUPLB12 [1.357 MB]  
 
TUPB090 Development of Permanent Magnet Focusing System for Klystrons 669
 
  • Y. Fuwa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, S. Michizono
    KEK, Ibaraki, Japan
 
  A permanent magnet focusing system for klystrons is under development to improve reliability of RF supply system and reduce power consumption. To save production cost, anisotropic ferrite magnets are used in this system. A test model has been fabricated and the power test of a 750 kW klystron with this focusing magnet is carried out. 60 % of the nominal output power has been achieved at a preliminary power test so far  
 
THPB085 LLRF Automation for the 9mA ILC Tests at FLASH 1023
 
  • J. Branlard, V. Ayvazyan, O. Hensler, H. Schlarb, Ch. Schmidt, N.J. Walker, M. Walla
    DESY, Hamburg, Germany
  • G.I. Cancelo, B. Chase
    Fermilab, Batavia, USA
  • J. Carwardine
    ANL, Argonne, USA
  • W. Cichalewski, W. Jałmużna
    TUL-DMCS, Łódź, Poland
  • S. Michizono
    KEK, Ibaraki, Japan
 
  Since 2009 and under the scope of the International Linear Collider (ILC) R&D, a series of studies takes place twice a year at the Free electron Laser accelerator in Hamburg, (FLASH) DESY, in order to investigate technical challenges related to the high-gradient, high-beam-current design of the ILC. Such issues as operating cavities near their quench limit with high beam loading or in klystron saturation regime are investigated, always pushing the limits of FLASH nominal operational conditions. To support these studies, a series of automation algorithms have been developed and implemented at DESY. These include automatic detection of cavity quenches, automatic adjustment of the superconducting cavity quality factor, and automatic compensation of detuning due to Lorentz forces. This paper explains the functionality of these automation tools, details about their implementation, and shows the experience acquired during the last 9mA ILC test which took place at DESY in February 2012. The benefit of these algorithms and the R&D results these automation tools have permitted will be clearly explained.  
 
TH1A01 Results Achieved by the S1-Global Collaboration for ILC 748
 
  • H. Hayano, M. Akemoto, S. Fukuda, K. Hara, N. Higashi, E. Kako, H. Katagiri, Y. Kojima, Y. Kondo, T. Matsumoto, S. Michizono, T. Miura, H. Nakai, H. Nakajima, K. Nakanishi, S. Noguchi, N. Ohuchi, T. Saeki, T. Shidara, T. Shishido, T. Takenaka, A. Terashima, N. Toge, K. Tsuchiya, K. Watanabe, S. Yamaguchi, A. Yamamoto, Y. Yamamoto, K. Yokoya
    KEK, Ibaraki, Japan
  • C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California, USA
  • T.T. Arkan, S. Barbanotti, M.A. Battistoni, H. Carter, M.S. Champion, A. Hocker, R.D. Kephart, J.S. Kerby, D.V. Mitchell, T.J. Peterson, Y.M. Pischalnikov, M.C. Ross, W. Schappert, B.E. Smith
    Fermilab, Batavia, USA
  • A. Bosotti, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI), Italy
  • K. Jensch, D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, P. Schilling, M. Schmökel, N.J. Walker, H. Weise
    DESY, Hamburg, Germany
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  The S1-Global collaboration (scope and plans presented at Linac10) ended successfully in 2011. In the S1-Global experiment several variants of ILC components (e.g. cavities, tuners, modules, couplers) proposed by all SCRF collaborators worldwide have been extensively tested and their performances compared, in order to build consensus for the technical choices towards the ILC TDR and to develop further the concept of plug-compatible components for ILC. The experiment has been carried at KEK with contribution of hardware and manpower from all collaborators.  
slides icon Slides TH1A01 [6.656 MB]