Author: McKenzie, J.W.
Paper Title Page
MOPB011 Photoinjector of the EBTF/CLARA Facility at Daresbury 192
 
  • B.L. Militsyn, D. Angal-Kalinin, C. Hill, S.P. Jamison, J.K. Jones, J.W. McKenzie, K.J. Middleman, B.J.A. Shepherd, R.J. Smith, R. Valizadeh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N. Bliss, M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  A description is given of a photoinjector designed for Compact Linear Advanced Research Accelerator (CLARA) and Electron Beam Test Facility (EBTF), which will eventually be used to drive a compact FEL. The photoinjector is based on a 2.5 cell S-band photocathode RF gun operating with a copper photocathode and driven by a third harmonic of Ti: Sapphire laser (266 nm) installed in dedicated thermally stabilized room. The injector will be operated with laser pulses with an energy of up to 2 mJ, a pulse duration of 100 fs and initially a repetition rate of 10 Hz, with the aim of increasing this eventually to 400 Hz. At a field gradient of 100 MV/m provided by a 10 MW klystron the gun is expected to deliver beam pulses with energy of up to 6 MeV. Duration and emittance of electron bunches essentially depend on the bunch charge and vary from 0.1 ps at 20 pC to 5 ps at 200 pC and from 0.2 to 2 mm mrad respectively. Additional compression of the electron bunches will be provided with a velocity bunching scheme. For thermal stability the low energy part of the injector is mounted on an artificial granite support.  
 
MOPLB08 Normal Conducting Deflecting Cavity Development at the Cockcroft Institute 159
 
  • G. Burt, P.K. Ambattu, A.C. Dexter, C. Lingwood, B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S.R. Buckley, P. Goudket, C. Hill, P.A. McIntosh, J.W. McKenzie, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • A. Grudiev
    CERN, Geneva, Switzerland
  • R.M. Jones
    UMAN, Manchester, United Kingdom
 
  Funding: This work has been supported by STFC and the EU through FP7 EUCARD.
Two normal conducting deflecting structures are currently being developed at the Cockcroft Institute, one as a crab cavity for CLIC and one for bunch slice diagnostics on low energy electron beams for EBTF at Daresbury. Each has its own challenges that need overcome. For CLIC the phase and amplitude tolerances are very stringent and hence beamloading effects and wakefields must be minimised. Significant work has been undertook to understand the effect of the couplers on beamloading and the effect of the couplers on the wakefields. For EBTF the difficulty is avoiding the large beam offset caused by the cavities internal deflecting voltage at the low beam energy. Propotypes for both cavities have been manufactured and results will be presented.
 
slides icon Slides MOPLB08 [1.572 MB]  
 
MOPB079 Normal Conducting Deflecting Cavity Development at the Cockcroft Institute 357
 
  • G. Burt, P.K. Ambattu, A.C. Dexter, C. Lingwood, B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S.R. Buckley, P. Goudket, C. Hill, P.A. McIntosh, J.W. McKenzie, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • A. Grudiev
    CERN, Geneva, Switzerland
  • R.M. Jones
    UMAN, Manchester, United Kingdom
 
  Funding: This work has been supported by STFC and the EU through FP7 EUCARD.
Two normal conducting deflecting structures are currently being developed at the Cockcroft Institute, one as a crab cavity for CLIC and one for bunch slice diagnostics on low energy electron beams for EBTF at Daresbury. Each has its own challenges that need overcome. For CLIC the phase and amplitude tolerances are very stringent and hence beamloading effects and wakefields must be minimised. Significant work has been undertook to understand the effect of the couplers on beamloading and the effect of the couplers on the wakefields. For EBTF the difficulty is avoiding the large beam offset caused by the cavities internal deflecting voltage at the low beam energy. Propotypes for both cavities have been manufactured and results will be presented.