Author: McIntosh, P.A.
Paper Title Page
MOPB004 Design and Operation of a Compact 1 MeV X-band Linac 183
 
  • G. Burt, T.N. Abram, P.K. Ambattu, C. Lingwood
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • I. Burrows, T. Hartnett, J.P. Hindley, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P.A. Corlett, A.R. Goulden, P.A. McIntosh, K.J. Middleman, Y.M. Saveliev, R.J. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  A compact 1 MeV linac has been produced at the Cockcroft Institute using X-band RF technology. The linac is powered by a high power X-band magnetron and has a 17 keV 200 mA thermionic gun with a focus electrode for pulsing. A bi-periodic structure with on-axis coupling is used to minimise the radial size of the linac and to reduce the surface electric fields.  
 
MOPLB08 Normal Conducting Deflecting Cavity Development at the Cockcroft Institute 159
 
  • G. Burt, P.K. Ambattu, A.C. Dexter, C. Lingwood, B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S.R. Buckley, P. Goudket, C. Hill, P.A. McIntosh, J.W. McKenzie, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • A. Grudiev
    CERN, Geneva, Switzerland
  • R.M. Jones
    UMAN, Manchester, United Kingdom
 
  Funding: This work has been supported by STFC and the EU through FP7 EUCARD.
Two normal conducting deflecting structures are currently being developed at the Cockcroft Institute, one as a crab cavity for CLIC and one for bunch slice diagnostics on low energy electron beams for EBTF at Daresbury. Each has its own challenges that need overcome. For CLIC the phase and amplitude tolerances are very stringent and hence beamloading effects and wakefields must be minimised. Significant work has been undertook to understand the effect of the couplers on beamloading and the effect of the couplers on the wakefields. For EBTF the difficulty is avoiding the large beam offset caused by the cavities internal deflecting voltage at the low beam energy. Propotypes for both cavities have been manufactured and results will be presented.
 
slides icon Slides MOPLB08 [1.572 MB]  
 
MOPB079 Normal Conducting Deflecting Cavity Development at the Cockcroft Institute 357
 
  • G. Burt, P.K. Ambattu, A.C. Dexter, C. Lingwood, B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S.R. Buckley, P. Goudket, C. Hill, P.A. McIntosh, J.W. McKenzie, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • A. Grudiev
    CERN, Geneva, Switzerland
  • R.M. Jones
    UMAN, Manchester, United Kingdom
 
  Funding: This work has been supported by STFC and the EU through FP7 EUCARD.
Two normal conducting deflecting structures are currently being developed at the Cockcroft Institute, one as a crab cavity for CLIC and one for bunch slice diagnostics on low energy electron beams for EBTF at Daresbury. Each has its own challenges that need overcome. For CLIC the phase and amplitude tolerances are very stringent and hence beamloading effects and wakefields must be minimised. Significant work has been undertook to understand the effect of the couplers on beamloading and the effect of the couplers on the wakefields. For EBTF the difficulty is avoiding the large beam offset caused by the cavities internal deflecting voltage at the low beam energy. Propotypes for both cavities have been manufactured and results will be presented.