Author: Machicoane, G.
Paper Title Page
THPB097 FRIB Front End Design Status 1047
 
  • E. Pozdeyev, N.K. Bultman, G. Machicoane, G. Morgan, X. Rao, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • J. Stovall
    CERN, Geneva, Switzerland
  • L.T. Sun
    IMP, Lanzhou, People's Republic of China
  • L.M. Young
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) will provide a wide range of primary ion beams for nuclear physics research with rare isotope beams. The FRIB SRF linac will be capable of accelerating medium and heavy ion beams to energies beyond 200 MeV/u with a power of 400 kW on the fragmentation target. This paper presents the status of the FRIB Front End designed to produce uranium and other medium and heavy mass ion beams at world-record intensities. The paper describes the FRIB high performance superconducting ECR ion source, the beam transport designed to transport two-charge state ion beams and prepare them for the injection in to the SRF linac, and the design of a 4-vane 80.5 MHz RFQ. The paper also describes the integration of the front end with other accelerator and experimental systems.
 
 
TU1A04 FRIB Accelerator Status and Challenges 417
 
  • J. Wei, E.C. Bernard, N.K. Bultman, F. Casagrande, S. Chouhan, C. Compton, K.D. Davidson, A. Facco, P.E. Gibson, T . Glasmacher, K. Holland, M.J. Johnson, S. Jones, D. Leitner, M. Leitner, G. Machicoane, F. Marti, D. Morris, J.P. Ozelis, S. Peng, J. Popielarski, L. Popielarski, E. Pozdeyev, T. Russo, K. Saito, R.C. Webber, M. Williams, Y. Yamazaki, A. Zeller, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
  • D. Arenius, V. Ganni
    JLAB, Newport News, Virginia, USA
  • J.A. Nolen
    ANL, Argonne, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) at MSU includes a driver linac that can accelerate all stable isotopes to energies beyond 200 MeV/u at beam powers up to 400 kW. The linac consists of 330 superconducting quarter- and half-wave resonators operating at 2 K temperature. Physical challenges include acceleration of multiple charge states of beams to meet beam-on-target requirements, efficient production and acceleration of intense heavy-ion beams from low to intermediate energies, accommodation of multiple charge stripping scenarios (liquid lithium, helium gas, and carbon foil) and ion species, designs for both baseline in-flight fragmentation and ISOL upgrade options, and design considerations of machine availability, tunability, reliability, maintainability, and upgradability. We report on the FRIB accelerator design and developments with emphasis on technical challenges and progress.
 
slides icon Slides TU1A04 [4.531 MB]