Author: Lebedev, V.A.
Paper Title Page
MO2A02 Increased Understanding of Beam Losses from the SNS Linac Proton Experiment 115
 
  • J. Galambos, A.V. Aleksandrov, M.A. Plum, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • E. Laface
    ESS, Lund, Sweden
  • V.A. Lebedev
    Fermilab, Batavia, USA
 
  The SNS Linac has been in operation for 6 years, with its power being gradually increased. A major operation goal is the decrease of beam loss. It has been recently suggested that intra- H–beam stripping contributes significantly to beam losses in an H linac. This was tested experimentally at SNS by accelerating a proton beam. Experimental analysis results are in good agreement with the theoretical estimates. In this paper we present the operational status and experience at the SNS linac, with emphasis on understanding beam loss in terms of intra-H–beam stripping.  
slides icon Slides MO2A02 [12.869 MB]  
 
MOPB095 Design of MEBT for the Project X Injector Experiment at Fermilab 398
 
  • A.V. Shemyakin, C.M. Baffes, A.Z. Chen, Y.I. Eidelman, B.M. Hanna, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, R.J. Pasquinelli, D.W. Peterson, L.R. Prost, G.W. Saewert, V.E. Scarpine, B.G. Shteynas, N. Solyak, D. Sun, M. Wendt, V.P. Yakovlev
    Fermilab, Batavia, USA
  • T. Tang
    SLAC, Menlo Park, California, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE
The Project X Injector Experiment (PXIE), a test bed for the Project X front end, will be completed at Fermilab at FY12-16. One of the challenging goals of PXIE is demonstration of the capability to form a 1 mA H beam with an arbitrary selected bunch pattern from the initially 5 mA 162.5 MHz CW train. The bunch selection will be made in the Medium Energy Beam Transport (MEBT) at 2.1 MeV by diverting undesired bunches to an absorber. This paper will present the MEBT scheme and describe development of its elements, including the kickers and absorber.
 
 
THPB014 Lattice Design and Beam Dynamics Studies for Project X 876
 
  • N. Solyak, J.-P. Carneiro, V.A. Lebedev, J.-F. Ostiguy, A. Saini
    Fermilab, Batavia, USA
 
  Fermilab is developing Project-X, a high intensity superconducting H machine for high energy physics experiments. The first stage is 1 mA average, 3 GeV linac operating in CW mode. Its front-end comprises a LEBT section with magnetic focusing and pre-chopping, a 162.5 MHz RFQ and ~10 m long MEBT section which includes a high bandwidth, bunch-by-bunch capable chopper. The latter extracts, out of a nominal 5 mA peak 162.5 MHz train, and arbitrary bunch structure able to meet the requirements of different experiments. Acceleration from 2.1 MeV to 3 GeV is accomplished through five families of SRF cavities operating at three frequencies: Half-wave resonators (162.5 MHz), spoke cavities (two families at 325 MHz) and elliptical cavities (two families at 650 MHz). In this contribution, we present the status of the CW linac lattice design and results from recent beam physics studies.