Author: Kim, J.-W.
Paper Title Page
TUPLB06 Status of the Rare Isotope Science Project in Korea 455
 
  • J.-W. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: National Research Foundation of Korea
A heavy-ion accelerator facility is being designed in Korea for the production of rare isotope beams under the name of rare isotope science project (RISP). The project is funded and officially started in Jan. 2012. The accelerator complex is composed of three main accelerators: a superconducting linac to use in-flight fragmentation (IF) method in generating isotope beams, a 70 kW proton cyclotron for the ISOL method, and a superconducting post accelerator for re-acceleration of rare isotope beams to the energy range of 18 MeV/u. The minimum energy of a U beam required for the IF driver is 200 MeV/u at the beam power of 400 kW. The beam current of U ions in high charge states is limited by the performance of existing ECR ion sources. This facility will be unique in the aspect that state-of-art accelerators are facilitated for both the IF and ISOL drivers and combined to produce extreme exotic beams. Also, standalone operation of each accelerator will allow us to accommodate diverse users from beam application fields as well as nuclear physics. The current status of the design efforts will be presented.
 
slides icon Slides TUPLB06 [1.901 MB]  
 
TUPB028 Status of the Rare Isotope Science Project in Korea 534
 
  • J.-W. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: National Research Foundation of Korea
A heavy-ion accelerator facility is being designed in Korea for the production of rare isotope beams under the name of rare isotope science project (RISP). The project is funded and officially started in Jan. 2012. The accelerator complex is composed of three main accelerators: a superconducting linac to use in-flight fragmentation (IF) method in generating isotope beams, a 70 kW proton cyclotron for the ISOL method, and a superconducting post accelerator for re-acceleration of rare isotope beams to the energy range of 18 MeV/u. The minimum energy of a U beam required for the IF driver is 200 MeV/u at the beam power of 400 kW. The beam current of U ions in high charge states is limited by the performance of existing ECR ion sources. This facility will be unique in the aspect that state-of-art accelerators are facilitated for both the IF and ISOL drivers and combined to produce extreme exotic beams. Also, standalone operation of each accelerator will allow us to accommodate diverse users from beam application fields as well as nuclear physics. The current status of the design efforts will be presented.
 
 
THPB084 A Low-Level RF Control System for a Quarter-Wave Resonator 1020
 
  • J.-W. Kim, D.G. Kim
    IBS, Daejeon, Republic of Korea
  • C.K. Hwang
    KAERI, Daejon, Republic of Korea
 
  A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency at near 88 MHz, and its required phase stability is approximately ±1° and amplitude stability less than ±1%. The control system consists of analog input and output components, and a digital system based on an FPGA for signal processing. It is a cost effective system, while meeting the stability requirements. Some basic properties of the control system were measured. Then the capability of the rf control has been tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which can induce regulated perturbation in the electric fields of the resonator. The control system is flexible such that its parameters can be easily configured to compensate for disturbance induced in the resonator.