Author: Kelley, M.J.
Paper Title Page
MOPB018 Analyzing Surface Roughness Dependence of Linear RF Losses 210
 
  • C. Xu
    The College of William and Mary, Williamsburg, USA
  • M.J. Kelley, C.E. Reece
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such as Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.
 
 
SUPB001 Analyzing Surface Roughness Dependence of Linear RF Losses 1
 
  • C. Xu, M.J. Kelley
    The College of William and Mary, Williamsburg, USA
  • C.E. Reece
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such as Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.
 
 
MOPB060 RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators 312
 
  • B. P. Xiao, G.V. Eremeev, H.L. Phillips, C.E. Reece
    JLAB, Newport News, Virginia, USA
  • M.J. Kelley, B. P. Xiao
    The College of William and Mary, Williamsburg, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab rf Surface Impedance Characterization (SIC) system* can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the measurement results from bulk Nb, thin film Nb on Cu and sapphire substrates, and thin film MgB2 on sapphire substrate provided by colleagues at JLab and Temple University. We also report on efforts to extend the operating range to higher fields.
* B.P. Xiao, et al., RSI, 2011. 82: p. 056104