Author: Ikegami, M.
Paper Title Page
MOPB094 Simulation Study on the Longitudinal Bunch Shape Measurement by RF Chopper at J-PARC Linac 395
 
  • T. Maruta
    JAEA/J-PARC, Tokai-mura, Japan
  • M. Ikegami
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  A RF chopper is placed in the medium energy transport section (MEBT1) at J-PARC linac. The chopper is normally driven at synchronous phase of 0 degree to give a maximum deflection. The chopper has two RF gaps and both of them deflect a beam bunch horizontally while RF is on. In the MEBT1 section, while we have a transverse emittance monitor, there is no longitudinal monitor. It is hard to newly place a longitudinal beam monitor there due to space limitation. We conduct a simulation which studies on the usability of the chopper to a longitudinal beam monitor. When the synchronous phase of the chopper is ± 90 degree, the longitudinal beam profile is projected to horizontal beam distribution. In this presentation, we introduce simulation results.  
 
TUPB101 Beam Loss Occurred at DTL Cavity in J-PARC Linac 696
 
  • A. Miura, K. Hirano, T. Ito, T. Maruta
    JAEA/J-PARC, Tokai-mura, Japan
  • M. Ikegami
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • T. Miyao, F. Naito, K. Nanmo
    KEK, Ibaraki, Japan
 
  The beam operation of J-PARC linac was suspended until December 2011 due to the damage by the Tohoku earthquake in March 2011. After resumed the operations, we measured the residual radiation along with the beam line during a short interval. Because the higher residual radiation was detected at the surface of drift tube linac (DTL) cavity by radiation survey, we installed the scintillation beam loss monitors (BLM) at the points where the higher radiation was detected to understand the cause of the radiation. Even the DTL section is low energy part of the linac, fine structure of the beam loss was observed by the scintillation BLM. And we measured the beam loss occurred at the DTL with the parameters of beam orbit and cavity settings. Also, the BLM is employed for the linac tuning. In this paper, the result of the radiation measurement and beam loss signals obtained by the scintillation BLMs are presented.  
 
MOPB096 Beam Loss Mitigation in J-PARC Linac after the Tohoku Earthquake 401
 
  • M. Ikegami, Z. Fang, K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
  • T. Maruta, A. Miura, J. Tamura, G.H. Wei
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • H. Sako
    JAEA, Ibaraki-ken, Japan
 
  The beam operation of J-PARC linac was interrupted by the Tohoku earthquake in March 2011. After significant effort for its restoration, we have resumed the beam operation of J-PARC linac in December 2011. After resumption of beam operation, we have been suffering from beam losses which were not observed before the earthquake. Tackling with the beam loss issues, we have been reached the comparable beam power for user operation to the one before the earthquake. In this paper, we present the experience in the beam start-up tuning after the earthquake with emphasis on the beam loss mitigation efforts.