Author: Harle, L.L.
Paper Title Page
MOPLB10 FRIB Technology Demonstration Cryomodule Test 165
 
  • J. Popielarski, E.C. Bernard, S. Bricker, S. Chouhan, C. Compton, A. Facco, A. Fila, L.L. Harle, M. Hodek, L. Hodges, S. Jones, M. Leitner, D. R. Miller, S.J. Miller, D. Morris, R. Oweiss, J.P. Ozelis, L. Popielarski, K. Saito, N.R. Usher, J. Weisend, Y. Zhang, S. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
  • M. Klaus
    Technische Universität Dresden, Dresden, Germany
 
  A Technology Demonstration Cryomodule (TDCM) has been developed for a systems test of technology being developed for FRIB. The TDCM consists of two half wave resonators (HWRs) which have been designed for an optimum velocity of β=v/c=0.53 and a resonant frequency of 322 MHz. The resonators operate at 2 K. A superconducting 9 T solenoid is placed in close proximity to one of the installed HWRs. The 9 T solenoid operates at 4 K. A complete systems test of the cavities, magnets, and all ancillary components is presented in this paper.
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
 
slides icon Slides MOPLB10 [2.530 MB]  
 
MOPB071 Process Developments for Superconducting RF Low Beta Resonators for the ReA3 LINAC and Facility for Rare Isotope Beams 342
 
  • L. Popielarski, C. Compton, L.J. Dubbs, K. Elliott, A. Facco, L.L. Harle, I.M. Malloch, R. Oweiss, J.P. Ozelis, J. Popielarski, K. Saito
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
The Facility for Rare Isotope Beams (FRIB) will utilize over 330 superconducting radio frequency (SRF) low beta cavities for its heavy ion driver linac. The SRF department will process and test all cavities prior to string assembly in the cleanroom. The baseline cavity surface and bulk niobium processing procedures have been established. The methods are being optimized for production process rate benchmarking. Additional processes are being developed to increase flexibility and reduce technical risks. This paper will describe procedure developments and experimental results. Topics include high temperature heat treatment for hydrogen degassing, selective chemical etching for cavity frequency tuning, low-temperature bake out and process quality control.
 
 
MOPB090 FRIB Technology Demonstration Cryomodule Test 386
 
  • J. Popielarski, E.C. Bernard, S. Bricker, S. Chouhan, C. Compton, A. Facco, A. Fila, L.L. Harle, M. Hodek, L. Hodges, S. Jones, M. Leitner, D. R. Miller, S.J. Miller, D. Morris, R. Oweiss, J.P. Ozelis, L. Popielarski, K. Saito, N.R. Usher, J. Weisend, Y. Zhang, S. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
  • M. Klaus
    Technische Universität Dresden, Dresden, Germany
 
  A Technology Demonstration Cryomodule (TDCM) has been developed for a systems test of technology being developed for FRIB. The TDCM consists of two half wave resonators (HWRs) which have been designed for an optimum velocity of β=v/c=0.53 and a resonant frequency of 322 MHz. The resonators operate at 2 K. A superconducting 9 T solenoid is placed in close proximity to one of the installed HWRs. The 9 T solenoid operates at 4 K. A complete systems test of the cavities, magnets, and all ancillary components is presented in this paper.
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
 
 
TUPB093 Compact 4 kW Variable RF Power Coupler for FRIB Quarter-wave Cavities 678
 
  • M.P. Kelly, Z.A. Conway, M. Kedzie, S.V. Kutsaev
    ANL, Argonne, USA
  • J.L. Crisp, L.L. Harle
    FRIB, East Lansing, USA
 
  A new compact 4 kW power coupler has been designed and prototyped at Argonne National Laboratory in collaboration with Michigan State University. The coupler is intended for use on the β=0.085 80.5 MHz superconducting quarter-wave cavities for the FRIB driver linac and also for the planned ReA6 quarter-wave cavity cryomodule. The design has a cold RF window and a 3 cm variable bellows section. The 16 cm overall length of the RF window and bellows facilitates a simple and compact installation onto the cavity inside the clean room. A prototype have been cold tested with high power under realistic conditions at Argonne and results are presented.  
 
TUPB040 Status of the Linac SRF Acquisition for FRIB 564
 
  • M. Leitner, E.C. Bernard, J. Binkowski, B. Bird, S. Bricker, S. Chouhan, C. Compton, K. Elliott, B. Enkhbat, A.D. Fox, L.L. Harle, M. Hodek, M.J. Johnson, I.M. Malloch, D. R. Miller, S.J. Miller, T. Nellis, D. Norton, R. Oweiss, J.P. Ozelis, J. Popielarski, L. Popielarski, K. Saito, M. Shuptar, G.J. Velianoff, J. Wei, M. Williams, K. Witgen, Y. Xu, Y. Yamazaki, Y. Zhang
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
The Facility for Rare Isotope Beams (FRIB) will utilize a high-intensity, superconducting heavy-ion driver linac to provide stable ion beams from protons to uranium up to energies of >200 MeV/u and at a beam power of up to 400 kW. The ions are accelerated to about 0.5 MeV/u using a room-temperature 80.5 MHz RFQ and injected into a superconducting cw linac consisting of 330 individual low-beta cavities in 49 cryomodules operating at 2 K. This paper discusses the current status of the linac SRF acquisition strategy as the project phases into construction mode.