Author: Gettmann, V.
Paper Title Page
TUPB035 A New Design of the RFQ Channel for GSI HITRAP Facility 555
 
  • S.G. Yaramyshev, W.A. Barth, G. Clemente, L.A. Dahl, V. Gettmann, F. Herfurth, M. Kaiser, M.T. Maier, D. Neidherr, A. Orzhekhovskaya, H. Vormann, G. Vorobjev
    GSI, Darmstadt, Germany
  • R. Repnow
    MPI-K, Heidelberg, Germany
 
  The HITRAP linac at GSI is designed to decelerate ions with mass to charge ratio of A/Z<3 from 4 MeV/u to 6 keV/u for experiments with ion traps. The particles are decelerated to 500 keV/u with an IH-DTL stucture and finally to 6 keV/u with a 4-rod RFQ. During commissioning stage the deceleration to approx. 500 keV/u was successfully demonstrated, while no particles behind the RFQ with an energy of 6 keV/u were observed. Dedicated simulations with DYNAMION code, based on 3D-fotometrie of the fabricated RFQ electrodes were successfully performed comprehending the commissioning results. In a second step the simulations have been experimentally confirmed at a test-stand (MPI, Heidelberg). An input energy, accepted by the RFQ channel is significantly higher than design value. For this reason the longitudinal beam emittance after deceleration with IH structure does not fit to the longitudinal RFQ acceptance. To solve this problem a new design of the RFQ channel with a correct input energy has been started. New RFQ parameters and the results of the beam dynamics simulations are presented in this paper.  
 
TUPB074 Superconducting CW Heavy Ion Linac at GSI 645
 
  • W.A. Barth, V. Gettmann, S. Mickat
    GSI, Darmstadt, Germany
  • W.A. Barth, P. Gerhard
    HIM, Mainz, Germany
 
  Funding: Helmholtz Institute Mainz (HIM)
An upgrade program has to be realized in the next years, such that enhanced primary beam intensities at the experiment target are available. For this a new sc 28 GHz full performance ECR ion source is under development. Via a new low energy beam line an already installed new RFQ and an IH-DTL will provide for cw-heavy ion beams with high average beam intensity. It is planned to build a new cw-heavy ion-linac behind this high charge state injector. In preparation an R&D program is still ongoing: The first linac section comprising a sc CH-cavity embedded by two sc solenoids (financed by HIM) as a demonstrator will be tested with beam at the GSI High Charge Injector (HLI).The new linac should feed the GSI flagship experiments SHIP and TASCA, as well as material research, biophysics and plasma physics experiments in the MeV/u-area. The linac will be integrated in the GSI-UNILAC-environment; it is housed by the existing constructions. Different layout scenarios of a multipurpose high intensity heavy ion facility will be presented as well as the schedule for preparation and integration of the new cw-linac.