Author: Fukuda, S.
Paper Title Page
SUPB024 Development of Permanent Magnet Focusing System for Klystrons 62
 
  • Y. Fuwa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, S. Michizono
    KEK, Ibaraki, Japan
 
  The Distributed RF System (DRFS) for the International Linear Collider (ILC) requires thousands of klystrons. The failure rate of the power supply for solenoid focusing coil of each klystron may be a critical issue for a regular operation of the ILC. A permanent magnet beam focusing system can increase reliability and eliminate their power consumption. Since the required magnetic field is not high in this system, inexpensive anisotropic ferrite magnets can be used instead of magnets containing rare earth materials. In order to prove its feasibility, a test model of a permanent magnet focusing beam system is constructed and a power test of the klystron for DRFS with this model is under preparation. The results of magnetic field distribution measurement and the power test will be presented.  
 
MOPLB02 Positron Injector Linac Upgrade for SuperKEKB 141
 
  • T. Kamitani, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, S. Fukuda, K. Furukawa, Y. Higashi, T. Higo, H. Honma, N. Iida, M. Ikeda, E. Kadokura, K. Kakihara, H. Katagiri, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, T. Mori, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, S. Ohsawa, M. Satoh, T. Shidara, A. Shirakawa, H. Sugimoto, T. Suwada, T. Takatomi, T. Takenaka, Y. Yano, K. Yokoyama, M. Yoshida, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  The KEKB B-factory is under an upgrade construction for the SuperKEKB. To achieve 40 times higher luminosity, the linac is required to inject electrons and positrons with higher intensities (e-: 1 nC → 5 nC, e+: 1 nC → 4 nC) and lower emittances (e-: 300 → 20 μm, e+: 2100 → 10 μm). This paper describes the upgrade scheme of the positron source. A new positron capture section will have larger transverse and energy acceptances by introducing a flux concentrator and large aperture L-band and S-band accelerating structures. Beam line layout and quadrupole focusing system will be rearranged for the enlarged beam acceptance. Beam optics is designed to be compatible for positron and electron beams with different energies and emittances. Pulsed quadrupoles and steering magnets are added for better flexibility in optics and orbit tuning. Parameter optimization of the positron source by optics calculation and particle tracking simulation is described.  
slides icon Slides MOPLB02 [0.575 MB]  
 
MOPB002 Positron Injector Linac Upgrade for SuperKEKB 177
 
  • T. Kamitani, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, S. Fukuda, K. Furukawa, Y. Higashi, T. Higo, H. Honma, N. Iida, M. Ikeda, E. Kadokura, K. Kakihara, H. Katagiri, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, T. Mori, K. Nakao, T. Natsui, Y. Ogawa, S. Ohsawa, T. Shidara, A. Shirakawa, H. Sugimoto, T. Suwada, T. Takatomi, T. Takenaka, Y. Yano, K. Yokoyama, M. Yoshida, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  The KEKB B-factory is under an upgrade construction for the SuperKEKB. To achieve 40 times higher luminosity, the linac is required to inject electrons and positrons with higher intensities (e-: 1 nC → 5 nC, e+: 1 nC → 4 nC) and lower emittances (e-: 300 → 20 μm, e+: 2100 → 10 μm). This paper describes the upgrade scheme of the positron source. A new positron capture section will have larger transverse and energy acceptances by introducing a flux concentrator and large aperture L-band and S-band accelerating structures. Beam line layout and quadrupole focusing system will be rearranged for the enlarged beam acceptance. Beam optics is designed to be compatible for positron and electron beams with different energies and emittances. Pulsed quadrupoles and steering magnets are added for better flexibility in optics and orbit tuning. Parameter optimization of the positron source by optics calculation and particle tracking simulation is described.  
 
TUPLB12 Development of Permanent Magnet Focusing System for Klystrons 470
 
  • Y. Fuwa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, S. Michizono
    KEK, Ibaraki, Japan
 
  The Distributed RF System (DRFS) for the International Linear Collider (ILC) requires thousands of klystrons. The failure rate of the power supply for solenoid focusing coil of each klystron may be a critical issue for a regular operation of the ILC. A permanent magnet beam focusing system can increase reliability and eliminate their power consumption. Since the required magnetic field is not high in this system, inexpensive anisotropic ferrite magnets can be used instead of magnets containing rare earth materials. In order to prove its feasibility, a test model of a permanent magnet focusing beam system is constructed and a power test of the klystron for DRFS with this model is under preparation. The results of magnetic field distribution measurement and the power test will be presented.  
slides icon Slides TUPLB12 [1.357 MB]  
 
TUPB090 Development of Permanent Magnet Focusing System for Klystrons 669
 
  • Y. Fuwa, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, S. Michizono
    KEK, Ibaraki, Japan
 
  A permanent magnet focusing system for klystrons is under development to improve reliability of RF supply system and reduce power consumption. To save production cost, anisotropic ferrite magnets are used in this system. A test model has been fabricated and the power test of a 750 kW klystron with this focusing magnet is carried out. 60 % of the nominal output power has been achieved at a preliminary power test so far  
 
TH1A01 Results Achieved by the S1-Global Collaboration for ILC 748
 
  • H. Hayano, M. Akemoto, S. Fukuda, K. Hara, N. Higashi, E. Kako, H. Katagiri, Y. Kojima, Y. Kondo, T. Matsumoto, S. Michizono, T. Miura, H. Nakai, H. Nakajima, K. Nakanishi, S. Noguchi, N. Ohuchi, T. Saeki, T. Shidara, T. Shishido, T. Takenaka, A. Terashima, N. Toge, K. Tsuchiya, K. Watanabe, S. Yamaguchi, A. Yamamoto, Y. Yamamoto, K. Yokoya
    KEK, Ibaraki, Japan
  • C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California, USA
  • T.T. Arkan, S. Barbanotti, M.A. Battistoni, H. Carter, M.S. Champion, A. Hocker, R.D. Kephart, J.S. Kerby, D.V. Mitchell, T.J. Peterson, Y.M. Pischalnikov, M.C. Ross, W. Schappert, B.E. Smith
    Fermilab, Batavia, USA
  • A. Bosotti, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI), Italy
  • K. Jensch, D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, P. Schilling, M. Schmökel, N.J. Walker, H. Weise
    DESY, Hamburg, Germany
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  The S1-Global collaboration (scope and plans presented at Linac10) ended successfully in 2011. In the S1-Global experiment several variants of ILC components (e.g. cavities, tuners, modules, couplers) proposed by all SCRF collaborators worldwide have been extensively tested and their performances compared, in order to build consensus for the technical choices towards the ILC TDR and to develop further the concept of plug-compatible components for ILC. The experiment has been carried at KEK with contribution of hardware and manpower from all collaborators.  
slides icon Slides TH1A01 [6.656 MB]