Author: Comunian, M.
Paper Title Page
TUPB032 Beam Dynamics of the Linac ALPI-PIAVE in View of Possible Upgrades Scenario for the SPES Project. 546
 
  • M. Comunian, C. Roncolato
    INFN/LNL, Legnaro (PD), Italy
  • B.B. Chalykh
    ITEP, Moscow, Russia
 
  At the Legnaro National Laboratories it is operating a Super Conducting linac for nuclear studies named ALPI. The ALPI linac is injected either by a XTU tandem, up to 14 MV, or by the s-c PIAVE injector, made with 2 SC-RFQ. In this article will be report the beam dynamics simulations for some possible scenario upgrade of the linac operate by a new injector, made with a new RFQ.  
 
THPB030 DTL Design for ESS 918
 
  • M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • R. De Prisco
    Lund University, Lund, Sweden
  • M. Eshraqi
    ESS, Lund, Sweden
  • P. Mereu
    INFN-Torino, Torino, Italy
 
  In the present design of the European Spallation Source (ESS) accelerator, the Drift Tube Linac (DTL) will accelerate a proton beam of 50 mA pulse peak current from 3 to 80 MeV. It is designed to operate at 352.2 MHz, with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period). Permanent magnet quadrupoles (PMQs) are used as focusing elements in a FODO lattice scheme, which leaves space for steerers and diagnostics . In this paper beam dynamics studies and preliminary RF design are shown, including constraints in terms of quadrupole dimensions, total length, field stability, RF power, peak electric field.  
 
THPB043 The RFQ injector for the Radioactive Ion Beam of SPES Project 951
 
  • M. Comunian, F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  A Continous Wave Radio Frequency Quadrupole Accelerator has been designed for the Radioactive Ion Beam of SPES Project to be used as an Injector of the ALPI Linac. The RFQ frequency is 80 MHz for an input energy of 40 keV, with output energy of 5 MeV and ion ratio q/A<= 1/7. Particular care has been put in the design phase to include an internal bunching section able to reduce the longitudinal output emittance. The details of the RF study of such a cavity are included as well.