Author: Burrill, A.
Paper Title Page
MOPB030 Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project 237
 
  • M.A. Drury, A. Burrill, G.K. Davis, J. Hogan, L.K. King, F. Marhauser, H. Park, J.P. Preble, C.E. Reece, A.V. Reilly, R.A. Rimmer, H. Wang, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten “C100” cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.
 
 
MOPB064 Developing of Superconducting RF Guns at BNL 324
 
  • S.A. Belomestnykh, Z. Altinbas, I. Ben-Zvi, J.C. Brutus, D.M. Gassner, H. Hahn, L.R. Hammons, J.P. Jamilkowski, D. Kayran, J. Kewisch, V. Litvinenko, G.J. Mahler, G.T. McIntyre, D. Pate, D. Phillips, T. Rao, S.K. Seberg, T. Seda, B. Sheehy, J. Skaritka, K.S. Smith, R. Than, J.E. Tuozzolo, E. Wang, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, J. Dai, M. Ruiz-Osés, T. Xin
    Stony Brook University, Stony Brook, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • A. Burrill
    JLAB, Newport News, Virginia, USA
  • R. Calaga
    CERN, Geneva, Switzerland
  • M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Medford, NY, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. The work at Niowave is supported by the US DOE under SBIR contract No. DE-FG02-07ER84861.
BNL is developing several superconducting RF guns for different applications. The first gun is based on a half-cell 1.3 GHz elliptical cavity. This gun is used to study generation of polarized electrons from GaAs photocathodes. The second gun, also of a half-cell elliptical cavity design, operates at 704 MHz and is designed to produce high average current electron beam for the ERL prototype from a multi-alkali photocathodes. The third gun is of a quarter-wave resonator type, operating at 112 MHz. This gun will be used for photocathode studies, including a diamond-amplified cathode, and to generate high charge, low repetition rate beam for the coherent electron cooling experiment. In this presentation we will briefly describe the gun designs, present recent test results and discuss future plans.