Author: Bashmakov, Y.A.
Paper Title Page
SUPB035 RF Photoinjector and Radiating Structure for High-power THz Radiation Source 86
 
  • S.M. Polozov, T.V. Bondarenko
    MEPhI, Moscow, Russia
  • Y.A. Bashmakov
    LPI, Moscow, Russia
 
  Sources of high-power electromagnetic radiation in THz band are becoming promising as a new method of a low activation introscopy. Research and development of accelerating RF photoinjector and radiating system for THz radiation source are reported. The photoinjector is based on disk loaded waveguide (DLW). Two different designs of accelerating structures were modeled: widespread 1.6 cell of DLW structure and travelling wave resonator structure. The resonant models of these structures and the structures with power ports were designed. Electrodynamics characteristics and electric field distribution for all models were acquired. Results of picoseconds photoelectron beam dynamics in modeled structures are reported. Design of decelerating structures exciting Cherenkov radiation are based on corrugated metal channel and metal channel coated with dielectric. Analysis of radiation intensity and frequency band are presented.  
 
THPB074 RF Photoinjector and Radiating Structure for High-power THz Radiation Source 1005
 
  • S.M. Polozov, T.V. Bondarenko
    MEPhI, Moscow, Russia
  • Y.A. Bashmakov
    LPI, Moscow, Russia
 
  Sources of high-power electromagnetic radiation in THz band are becoming promising as a new method of a low activation introscopy. Research and development of accelerating RF photoinjector and radiating system for THz radiation source are reported. The photoinjector is based on disk loaded waveguide (DLW). Two different designs of accelerating structures were modeled: widespread 1.6 cell of DLW structure and travelling wave resonator structure. The resonant models of these structures and the structures with power ports were designed. Electrodynamics characteristics and electric field distribution for all models were acquired. Results of picoseconds photoelectron beam dynamics in modeled structures are reported. Design of decelerating structures exciting Cherenkov radiation are based on corrugated metal channel and metal channel coated with dielectric. Analysis of radiation intensity and frequency band are presented.