Author: Amberg, M.
Paper Title Page
SUPB022 First Measurements on the 325 MHz Superconducting CH Cavity 56
 
  • M. Busch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg
    HIM, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
  • M. Pekeler
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  Funding: Work supported by HIM, GSI, BMBF Contr. No. 06FY161I
At the Institute for Applied Physics (IAP), Frankfurt University, a superconducting 325 MHz CH-Cavity has been designed and built. This 7-cell cavity has a geometrical \beta of 0.16 corresponding to a beam energy of 11.4 AMeV. The design gradient is 5 MV/m. Novel features of this resonator are a compact design, low peak fields, easy surface processing and power coupling. Furthermore a new tuning system based on bellow tuners inside the resonator will control the frequency during operation. After successful rf tests in Frankfurt the cavity will be tested with a 10 mA, 11.4 AMeV beam delivered by the GSI UNILAC. In this paper first measurements and corresponding simulations will be presented.
 
 
TUPB071 First Measurements on the 325 MHz Superconducting CH Cavity 636
 
  • M. Busch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg
    HIM, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
  • M. Pekeler
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  Funding: Work supported by GSI, BMBF Contr. No. 06FY7102, 06FY9089I
At the Institute for Applied Physics (IAP), Frankfurt University, a superconducting 325 MHz CH-Cavity has been designed and built. This 7-cell cavity has a geometrical \beta of 0.16 corresponding to a beam energy of 11.4 AMeV. The design gradient is 5 MV/m. Novel features of this resonator are a compact design, low peak fields, easy surface processing and power coupling. Furthermore a new tuning system based on bellow tuners inside the resonator will control the frequency during operation. After successful rf tests in Frankfurt the cavity will be tested with a 10 mA, 11.4 AMeV beam delivered by the GSI UNILAC. In this paper first measurements and corresponding simulations will be presented.
 
 
SUPB023 Status of the Superconducting CW Demonstrator for GSI 59
 
  • F.D. Dziuba, M. Amberg, M. Busch, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
 
  Funding: Helmholtz Institut Mainz (HIM), GSI, BMBF Contr. No. 06FY7102
Since the existing UNILAC at GSI will be used as an injector for the FAIR facility a new superconducting (sc) continous wave (cw) LINAC is highly requested by a broad community of future users to fulfil the requirements of nuclear chemistry, especially in the research field of Super Heavy Elements (SHE). This LINAC is under design in collaboration with the Institute for Applied Physics (IAP) of Frankfurt University, GSI and the Helmholtz Institut Mainz (HIM). It will consist of 9 sc Crossbar-H-mode (CH) cavities operated at 217 MHz which provide an energy up to 7.3 AMeV. Currently, a prototype of the cw LINAC is under development. This demonstrator comprises the first sc CH cavity of the LINAC embedded between two sc solenoids mounted in a horizontal cryomodule. One important milestone of the project will be a full performance test of the demonstrator by injecting and accelerating a beam from the GSI High Charge State Injector (HLI) in 2014. The status of the demonstrator is presented.
 
 
TUPB072 Status of the Superconducting CW Demonstrator for GSI 639
 
  • F.D. Dziuba, M. Amberg, M. Busch, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
 
  Funding: Helmholtz Institut Mainz (HIM), GSI, BMBF Contr. No. 06FY7102
Since the existing UNILAC at GSI will be used as an injector for the FAIR facility a new superconducting (sc) continous wave (cw) LINAC is highly requested by a broad community of future users to fulfil the requirements of nuclear chemistry, especially in the research field of Super Heavy Elements (SHE). This LINAC is under design in collaboration with the Institute for Applied Physics (IAP) of Frankfurt University, GSI and the Helmholtz Institut Mainz (HIM). It will consist of 9 sc Crossbar-H-mode (CH) cavities operated at 217 MHz which provide an energy up to 7.3 AMeV. Currently, a prototype of the cw LINAC is under development. This demonstrator comprises the first sc CH cavity of the LINAC embedded between two sc solenoids mounted in a horizontal cryomodule. One important milestone of the project will be a full performance test of the demonstrator by injecting and accelerating a beam from the GSI High Charge State Injector (HLI) in 2014. The status of the demonstrator is presented.