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Abstract

The future TeV linear collider should have extremely small beam
emittance to achieve the required luminosity. Precise alignment
of focusing and accelerating elements is necessary to prevent
emittance dilution. Analysis of ground motion is therefore an
essential problem. This paper reviews studies of ground mo-
tion, focusing on the effects the in main linac. After recalling
results of measurements of ground motion collected at different
places, the method based on spectral description of ground mo-
tion, which allows prediction of emittance dilution, in presence
of orbit correction feedback as well, is discussed.

Introduction

The first study of ground motion with respect to linear collider
was performed at SLAC by G. Fischer [1]. The intention to build
TeV linear collider has inspired new studies started at Protvino
[2] and since then in all laboratories developing linear collider
projects [3]-[7].

The level of understanding of ground motion has been devel-
oped significantly in recent years. The correlation properties of
high frequency motion have been investigated [2, 3, 7] in addi-
tion to simple spectral amplitude analysis. The slow motion in-
vestigations have resulted in discovering of the diffusive ground
motion (‘ATL law’ [2]). Dependance of motion on the earth
structure was studied [12, 6].

The mathematics, which allows prediction of the effect on the
beam, was also being developed in parallel to measurements.
The 2-D power spectrum P (ω, k), introduced for ground mo-
tion description [4, 8], makes the evaluation of the effect on the
beam easy and natural — once this spectrum, the spectral re-
sponse function of the focusing structure and the spectral proper-
ties of applied orbit correction feedbacks are known. The mea-
sured data were used to to find an approximation of P (ω, k) [8]
for typical seismic conditions.

This paper intends to show the complete way from measure-
ments to the beam emittance growth. We start from general equa-
tions, then consider measured data, create approximation of the
2-D spectrum, and get results using spectral response functions
and feedback properties. The misalignment generated beam off-
set and dispersion in the main regular linac governed by the ‘one
to one’ orbit correction is used to illustrate our considerations.
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Linac and Ground Motion

General equations

Misalignments of focusing quadrupoles of the linac produce off-
set of the beam trajectory and hence chromatic dilution of the
beam, which can be expressed via an integral involving the
power spectrum of the quadrupole displacements and a spectral
response function of the considered linac.

Let xi(t) = x(t, si) be the transverse position of quadrupoles
of the linac, relatively to a reference line, si the longitudinal po-
sition. The incoming beam angle and position are zero, the ref-
erence line passes through some element, placed at the entrance.
The beam offset at the exit, relative to the exit position xfin, and
the dispersion, linear term, are

x∗(t) =
N∑
i=1

ci xi(t)− xfin and ηx(t) =
N∑
i=1

di xi(t)

Here ci and di are the first derivatives of the beam offset and dis-
persion at the exit of the linac with respect to the displacement
of the i-th quadrupole.

While 〈x∗(t)〉 and 〈ηx(t)〉, averaged on realizations, are zero,
the mean squared value gives the offset or dispersive error, for
example

〈η2
x(t)〉 =

∑∑
didj 〈xi(t)xj(t)〉

As we consider random process, one can express this through the
corresponding power spectrum P (t, k).

For initial misalignment or (and) ground motion all spatial har-
monics are independent. We have then

〈η2
x(t)〉 =

∫ ∞
−∞

P (t, k)Gη(k)
dk

2π
Here Gη(k) is the so called spectral response function corre-
sponding to dispersion. The expression for the offset is similar,
with Goff(k). The expression allows to obtain results for any
spectrum, including the particular case of static gaussian mis-
alignments studied in detail [9].

The spatial power spectrum P (t, k) of displacements x(t, s)
can be easily found as far as initial misalignment or ground mo-
tion are concerned. Assuming that focusing elements are aligned
at t = 0 and then are moved by ground motion, the evolution of
the power spectrum is [4]:

P (t, k) =
∫ ∞
−∞

P (ω, k) 2 [1− cos(ωt)]
dω

2π
It is connected therefore to the 2-D power spectrum P (ω, k),
which characterizes ground motion properties, including both
spatial and temporal correlation information.

In a regular linac the correction procedures can also be cor-
rectly considered within the analytical spectral approach. Cor-
rection procedures, such as ‘one to one’ or ‘adaptive alignment’

LINAC 96

621



          

[10] may introduce correlation of phases between harmonics k
and k̃ = kmax−k (where kmax = π/L,L is the quadrupole spac-
ing). The rms dispersion is then given by an expression, which
takes the correlation into account [14].

In short, the spectral response functions G(k) describe the
properties of the focusing channel, while the power spectrum
P (t, k) depends on the applied method of correction, initial mis-
alignment and ground motion.

Ground motion properties

The 2-D spectrum P (ω, k) is hard to measure directly. But if
one knows the power spectra of absolute motion and correlation
information, or the power spectra of relative motion ρ(ω,L), the
2-D spectrum can be found using

ρ(ω,L) =
∫ ∞
−∞

P (ω, k) 2 [1− cos(kL)]
dk

2π

and the reverse relation [4]. Naturally, ρ(ω,∞) = 2p(ω).
The measurable correlation, defined via mutual spectrum as
C(ω,L) = p12/

√
p1p2, connected to the relative spectrum as

C(ω,L) = 1− ρ(ω,L)/(2p(ω)).
The power spectrum p(ω) of absolute ground motion (which

contains contribution of all k) grows very fast with decreas-
ing frequency. In quiet conditions it behaves approximately as
p(ω) ∝ 1/ω4 in rather wide frequency band. The motion is un-
avoidable as it consists of seismic activity. At low frequency
f < 1 Hz the sources are also the atmospheric activity, water
motion in the oceans, temperature variations etc. A famous ex-
ample of the ocean influence is the peak in the band 0.1 – 0.2
Hz with a few micrometers amplitude (Fig.1). In general, mo-
tion in the low frequency band f < 1 Hz depend not only on the
local conditions, remote sources give significant contribution to
the slow motion.

From the other side, in the band f > 1 Hz the human produced
noises are usually dominating over the natural noises and the
power spectrum depends very much on the local conditions (lo-
cation of sources, depth of tunnel etc.). Locally generated noises
can be much bigger than remotely generated. For example the
spectrum measured at the tunnel of operating accelerator (like
HERA collider at DESY or SLC at SLAC) presents high ampli-
tudes at f > 1 Hz due to noises generated by different technical
devices (Fig.2). These noises may have big amplitude and bad
correlation. Technical devices therefore should be properly de-
signed in order to pass as low vibration as possible to the tunnel
floor.

It is known from correlation measurements [3, 7] that in quiet
conditions the motion in the band f > 0.1 Hz can be consid-
ered as wave-like, i.e. the frequency ω and wave number k are
connected via phase velocity v. At f ≈ 0.1 Hz the value of v
was found to be close to the velocity of sound (in the surround-
ing media): about 3000 m/s at LEP and about 2000 m/s at SLC
tunnel. At the cultural noise dominated band this value decreases
rapidly — the fitted value of v determined from the measured at
SLAC correlation behave as v ≈ 450 + 1900 exp(−f/2) m/s
(f > 0.1 Hz) [7]. The SLAC measurements, which used the
most accurate probes, have shown (at least at this place and these

conditions) that contribution of non-wave motion, if there is any
not resolved by probes, is negligible at f > 0.1 Hz.
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Figure 1: Absolute power spectrum measured in a quiet place
(CERN [3]) and the modeling spectrum. Modeling relative
spectra ρ(ω,L) for different L.

10
-3

10
-2

10
-1

10
0

10
1

10
210

-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3 L=10 m

L=100 m
L=1000 m
L=infinity
measured

f (Hz)

m /Hz2µ

Figure 2: Absolute power spectrum measured in a noisy place
(HERA [5]) and the modeling spectrum. Modeling relative
spectra for different L.

The motion at f < 0.1 Hz is different. The elastic motion
(produced by the moon, for example) presents here too, but of
much bigger relevance is the inelastic diffusive motion, proba-
bly fed by the elastic motion and caused by its dissipation. The
motion is believed to be described by the ‘ATL law’ [2], which
says that the relative rms displacement after a time T of the two
points separated by a distanceL is 〈∆X2〉 = AT L. The param-
eter A was found to be A ≈ 10−5±1 µm2s−1m−1 for different
places. One can see that this displacement is proportional to the
square root of the time and separation: this stresses the random,
non wavelike, diffusion character of the slow relative motion and
means that the number of step-like breaks that appear between
two points is proportional to the distance between them and the
elapsed time.

If this phenomenon is indeed connected with dissipation of
the elastic motion, the parameter A should depend mainly on
the earth properties, because the sources of elastic motion are
the same for all places. One could expect that in the places with
smaller dissipation the value A should be smaller and it should
also depend on the level of the rock fragmentation. Indeed, the
parameter A was observed to be smaller in tunnels built in solid
rock. It also depends on the method of tunnel construction: in the
tunnel bored in granite A ≈ 10−6 µm2s−1m−1 was observed,
while in the similar tunnel, which was built by use of explosions,
the parameterA is found to be 5 times larger probably because of
the fragmentation, artificially increased during construction [6].
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The parameter A also depends on the tunnel depth, generally it
is smaller in deeper tunnels [12].

The ranges of T and L where the ‘ATL law’ is valid are very
wide. In [12] it was summarized that ‘ATL’ is confirmed by mea-
surements of ground motion in different accelerator tunnels in
the range from minutes to tens of years and from a few meters
to tens of kilometers. The measured relative power spectra, pre-
sented in [6] and in [11], exhibit the ‘ATL’ behavior already for
f < 0.1 Hz (for L ≈ 30 m). These measurements indicate that
the transition region from wave to diffusion motion is placed at
rather short times (a few seconds). This can result in certain de-
creasing of correlation around f ∝ 0.01 Hz.

Although the ‘ATL law’ was found from the direct analysis
of measurements of ground motion, its most interesting confir-
mations come from the observations of beam motion in big ac-
celerators produced by displacements of the focusing elements.
An example is the measurements of the closed orbit motion in
the HERA circular collider, which have shown that the power
spectrum of this motion corresponds to the ‘ATL law’ in a wide
frequency range, from f ≈ 0.1 Hz down to f ≈ 10−6 Hz [11].

The very slow motion can be systematic (not described by
power spectrum) as well. Such motion has been observed at
LEP Point 1 and PEP [13] where some quadrupoles move unidi-
rectionally during many years with rate about 0.1 – 1 mm/year.
Quite close (a few tens of meters) points can move in opposite
direction. Amplitude of the motion can be larger than the one
of diffusive motion. The motion is probably due to geological
peculiarities of the place or due to relaxation if the tunnel was
bored in solid rock.

Ending with the ground motion one could note that the ele-
ments of the linac will be placed not on the floor, but on some
girder, which could amplify some frequencies due to its own res-
onances. It is not only this amplification that is dangerous, more
important is that the not identical girders will amplify or change
the floor motion by different way, which can spoil correlation
of the floor motion. It is therefore preferable to push the girder
resonances to high frequencies where the correlation is poor any-
way and floor amplitudes are smaller. This requires firm connec-
tion of the girder with the floor. The active systems [15], which
can help in certain extend to isolate the quadrupoles from high
frequency human induced floor motion, should be made insen-
sitive to slow motion (say, below 1 Hz), otherwise long wave-
length motion can create more dangerous short wavelength due
to inequality of active supports.

Ground motion model

The approximation for P (ω, k) is built [8] in assumption that
the low frequency part of motion is described by the ‘ATL
law’, while the high frequency part is produced mainly by
waves. The 2-D spectrum corresponded the ‘ATL’ motion is
P (ω, k) =A/(ω2k2) (here ω and k are defined on the entire
axis). In order to be included into the model, this spectrum
should be corrected because it overestimates fast motion — the
corresponded spectrum of relative motion exceeds the one of ab-
solute motion. The correction is made by the way that will over-
estimate the effect rather than underestimate it. Better model

can be built once measured data on transition region are avail-
able. The elastic waves are assumed to be transverse, propagat-
ing at the surface of the ground with uniform distribution over
azimuthal angle. Finally, the modeling spectrum is:

P (ω, k) =
A

ω2k2
(1− cos(kB/A/ω2)) +

∑
i

Di(ω)Ui(ω, k)

The function Ui(ω, k) describes the wave number distribution
of the waves with frequency ω. In our case Ui(ω, k) =
2/
√
k2

cut − k2 if |k| ≤ kcut and zero otherwise. Here kcut(ω) =
ω/vi and vi the phase velocity of wave propagation. The cases
k = 0 and k = kcut correspond to the waves propagating perpen-
dicular and along the linear collider correspondingly. Since the
integral over dk/(2π) of U(ω, k) equals one, the functionD(ω)
describes contribution of these waves to the absolute spectrum
p(ω). We writeD(ω) asDi(ω) = ai/(1+[di(ω−ωi)/ωi]4). In
order to model complex behavior of the spectrum, for example
in presence of cultural noises, a few terms with waves added to
P (ω, k), i is the number of the peak.

We consider here two models. Parameters of the first model
are the following: A= 10−5 µm2s−1m−1, B = 10−6 µm2s−3.
The single peak described by ω1 = 2π · 0.14 Hz for the fre-
quency of the peak, a1 = 10µm2/Hz for its amplitude, d1 = 5
for its width, and v1 = 1000 m/s for the velocity. It is the
model of quiet place such as LEP tunnel during shutdown.
The thick line on Fig.1 shows the spectrum of absolute mo-
tion, calculated from P (ω, k), corresponding to these parame-
ters. The actual measured p(ω) can be bigger than the mod-
eling one at f < 0.1 Hz, because slow long wavelength mo-
tion does not included into the model. The second model cor-
responds to seismic conditions with big contributions from cul-
tural noises (as in the HERA tunnel in operating conditions).
The parameters are the following: A= 10−5 µm2s−1m−1,
B = 10−3 µm2s−3 and three peaks: f1 = 0.14, f2 = 2.5, f3 = 50
Hz; a1 = 10, a2 = 10−3, a3 = 10−7µm2/Hz; d1 = 5, d2 = 1.5,
d3 = 1.5; v1 = 1000, v2 = 400, v3 = 400 m/s. One can see (Fig.3)
how the waves are faded by the ‘ATL’ in P (t, k) when time in-
creases. The parameters of these two models have been cho-
sen taking into account correlation measurements in the LEP [3],
HERA [5] and SLC [7] tunnels and measurements of the closed
orbit motion in HERA [11].

The effect of the ground motion on the beam can be obtained
both by analytical way via the integral of spectral function with
the modeling power spectrum and also by simulations, when
ground motion displacement x(t, s) is modelized by summation
of harmonics and the beam degradation determined by particle
tracking. In the latter case we first analyze the modeling P (ω, k)
spectrum to define the band of relevant ω and k, assuming that
Tmin < T < Tmax and Lmin < L < Lmax. Then we split this
2-D band by cells (50 × 50 typically) equidistantly in logarith-
mic sense, find rms amplitude of each cell aij and generate two
sets of random phases φij and ψij . Positions of ωi and kj with-
ing each cells are chosen randomly so after many seeds all (ω, k)
will be checked. The modeling displacement x(t, s) is then

x(t, s) =
∑
i

∑
j

aij [sin(ωit) sin(kjs+ φij)

+ (cos(ωit)− 1) sin(kjs+ ψij)]

LINAC 96

623



           

This harmonics model was used in our simulations, eventually
it will be used in the linear collider flight simulator ‘MERLIN’
[16], which is being developed to analyze performance of the
beam delivery systems.
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Figure 3: Modeling power spectra P (t, k) for the second noisy
model and the spectra obtained in simulations using the harmon-
ics model.

Spectral response function

The spectral response function corresponded to dispersion of the
beam is

Gη(k) =

(
N∑
i=1

di(cos(ksi)− 1)

)2

+

(
N∑
i=1

di sin(ksi)

)2

Similar for the offset, with ci, with the sum runs up toN+1 and
cN+1 = −1. In thin lens approximation, in linear order ci =
−Ki r

i
12 and di = Ki (ri12 − ti126) where Ki is r21 of the quad-

rupole matrix, ri12 and ti126 are the matrix elements from the i-th
quadrupole to the exit.

At small k one has Goff(k) ≈ k2R2
12 and Gη(k) ≈ k2T 2

126.
For the regular linac only the band [0, kmax] is unique. In this
band the spectral function has two resonances: kL = µ/2 and
kL = π − µ/2. The values of spectral function at these reso-
nances as well as their width can be found analytically.
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Figure 4: Spectral response functions.

The examples in this paper are given for the modeling FODO
linac: number of quadrupoles N = 600, spacing L = 25 m,
phase advance µ = 60 degrees, initial and final energy γini =
6000, γfin = 5 · 105, beta functions at the even defocusing
quadrupoles and at the exit are βmin = 28.86 m. The spectral
functions for this linac are shown on Fig.4.

Free evolution

Fig.5 shows the rms beam offset relative to the linac exit ver-
sus time for quiet and noisy models of ground motion. The an-

alytical results are shown in comparing with results of simula-
tions, which use tracking and the model of harmonics to simu-
late beam line misalignment. To estimate the critical time scale,
this offset should be compared with the beam size at the exit. If
γεy = 2.5 · 10−7 m, then at the exit σy ≈ 3.5 · 10−6 m and the
critical time is about one minute. For somewhat smaller emit-
tance the cultural noise of the second model becomes important
and the critical time decreases to a fraction of second.

One can see that the chosen P (ω, k) spectrum gives a linear
dependence of the relative misalignment variance (and hence the
rms beam offset as well) versus time for large T (‘ATL’ behav-
ior), while for small T the variance is proportional to T 2. This
square dependence at small time is the general property of the
spectrum that drops fast enough with increasing frequency [17].
One can mention that if the systematic motion is significant, the
T 2 behavior will appear at big T too.
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Figure 5: Relative beam offset. Free evolution. Quiet and noisy
models. Analytical results (lines) and simulations.

Feedback controlled evolution

Many feedbacks will inevitably be used in linear collider. To
study the equilibrium rms offset accurately, one need to put the
feedback gain function into the integral, which will suppress fre-
quencies smaller than frep/6 – frep/20.

To illustrate influence of an orbit correction feedback on the
beam dispersion, let us consider the ‘one-to-one’ algorithm,
which consists in zeroing the BPM measurements (assumed to be
perfect). Here we assume that this is done by steering the beam
by means of dipole correctors (equivalent to the quadrupole
shift). This and other orbit correction or alignment methods are
considered in more details (including BPM errors etc.) else-
where [14].

If the i-th quadrupole is misaligned, three angles are needed
to re-align the beam. The equivalent quadrupole displacements,
to be subtracted from their initial positions, are (if acceleration
is neglected):

∆xi = −2xi/(LKi) , ∆xi+1 = ∆xi−1 = −xi/(LKi)

After such a procedure the beam trajectory will pass through po-
sitions of quadrupoles before correction (Fig.6).

To find the beam dispersion one can notice that in spectral
approach, in a regular FODO lattice with Ki = −Ki+1, a k-
th harmonics of the initial misalignment produces two harmon-
ics of quadrupole displacements after the correction: k-th and
(kmax − k)-th with opposite phases. If this self correlation as
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well as injection conditions are taken into account, the disper-
sion after correction can be found [14].
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An alternative way to write the beam dispersion after ‘one-to-
one’ correction is

〈η2
x(t)〉 = 2

∫ kmax

0

P̂ (t, k) Ĝη(k)
dk

2π
(1)

where Ĝη(k) and P̂ (t, k) are the effective spectral response
function and the effective spectrum of quadrupole displacements
before correction (which can include BPM offset and resolution
errors also) respectively. The Ĝη(k) is built with new coeffi-
cients (neglecting acceleration) [14]:

d̂i = di + (2di + di+1 + di−1)/(LKi)

It gives d̂i = −Kir
i
12. This follows from the algorithm of cor-

rection — the angle caused by displaced quadrupole is corrected,
thus the term T126 vanishes. The Ĝη and Goff are practically
the same therefore. The considered ‘one-to-one’ scheme reduce
emittance growth by factor N2 roughly, which increase signifi-
cantly the time interval until a beam based alignment might be
again required. The critical time (when ∆p/pη = σy) for the
beam with ∆p/p = 10−3 is a few hours without and about one
year with correction (Fig.7).
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Figure 7: Beam dispersion. Free (upper curves) and feedback
controlled evolution (lover curves).

Fig.7 shows dispersion without and with ‘one-to-one’ correc-
tion. In the second case the dispersion is shown at the moment
just after correction. This value does not depend on how many
times the correction has been applied before. If the repetition
rate of corrections is enough high, the values just after and just
before correction are very close.

Conclusion

A future TeV linear collider, having extremely small emittance
of beams, will suffer from the ground motion, which will spoil
alignment of focusing and accelerating elements and result in
offset and emittance growth.

The ground motion studies, performed by different laborato-
ries, resulted in significant improvement of understanding of this
phenomenon. Different types of motion have been investigated,
many factors that the motion depends on are learned. The math-
ematical formalism allowing prediction of the beam behavior is
developed.

Though many ground motion features are still to be carefully
investigated, one may reasonably believe that the ground motion
problem of the future linear collider can be overcame provided
that stored knowledge will be used at each step of design and
construction.
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