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Abstract 

In 1991 a space charge calculation for bunched beams 
with three-dimensional ellipsoidal symmetry was proposed 
for the PARMILA code, replacing the usual SCHEFF 
routines: it removes the cylindrical symmetry needed for the 
Fast Fourier Transform method and avoids the point to point 
interaction computation, where the number of simulation 
points is limited. 

This routine has now been improved with the 
introduction of two (or more) ellipsoids, giving a good 
representation of actual, pear-shaped bunches (unlike the 
3-D ellipsoidal assumption). The ellipsoidal density 
distributions are computed with a new method, avoiding the 
difficulty caused by statistical effects, encountered near the 
centre (the axis in 2-D problems) by the previous method. It 
also provides a check of the ellipsoidal symmetry for each 
part of the distribution. Finally, the Fourier analysis reported 
in 1991 has been replaced by a very convenient Hermite 
expansion, which gives a simple but accurate representation 
of practical distributions. Introduced in the new, versatile 
beam dynamics code, DYNAC, it should provide a good tool 
for the study of the effects of the various parameters 
responsible for the halo formation in high intensity linacs. 

Introduction 

Present linac beam dynamics codes often include a 
space charge routine, describing the evolution of intense 
beams [I). They find their application in accelerators used 
as injectors for ultra high energy machines used in particle 
physics research. A new generation of linacs is now under 
consideration for various industrial applications like fission 
products waste incineration, generation of electrical power, 
pulsed neutron research facilities and other developments on 
advanced materials. What is needed in such machines is 
maintaining the loss level at less than 1 W/m, rather than 
conserving the beam quality as defined by its r.m.s. 
emittances. It is well known that when the intensity is 
increased in a Iinac, the beam never keeps a well defined 
shape ; instead a halo develops around it, due to the non 
linear character of the space charge forces. Theories are now 
being developed to understand the mechanisms of the 
formation of this halo and to quantify it. Simulation codes 
will however need to be improved for a more detailed study 
of the exact beam evolution. The present work, with its 
flexibility, is a step in this direction. 

Existing Routines 

Space charge routines can be classified in three 
categories. 

The first type are the Particle In Cell (PIC) codes. 
They often use a Fast Fourier Transform (FFT). The space 
charge potential is computed on the nodes of a mesh, with 
an adequate smoothing interpolation from node to node. The 
SCHEFF routine in the PARMILA code [2) is of this type. 
These routines are quite fast and accurate, in spite of a slow 
apparent increasing emittance [3], which is a purely 
numerical effect[4). Their main drawback is that, in order to 
avoid the long computation time required for 3-D FFf, they 
use rotational symmetry of the particle distribution around 
the axis for the computation. 

The second type are Particle to Particle Interaction 
codes, used in MAPROI [5) and MOTION [6). Here the 
space charge field is made linear inside spherical clouds of 
an optimized size around each macro-particle. It is quite 
accurate and avoids the increasing emittance given by the 
PIC codes. Its main drawback, however, is that when 
increasing the number of macro-particles N, the computing 
time increases as N2. 

In the last type, used in MAPR02 [5) and SC3DELP 
[7], it is assumed that in transverse and longitudinal 
direction, the bunches keep an elliptical distribution. Such 
an assumption, reasonable in the transverse direction, is not 
justified in the longitudinal direction, where the motion is 
governed by a different, non-linear equation. In addition, the 
computation of the particle density is subject to difficulty 
near the centre (or the axis; it gives a zero divide). It can 
also be subject to statistical noise (like the PIC codes). Our 
new routine is o( this last type, but it avoids these 
difficulties. Considering bunches to be constituted of several 
ellipsoids, it can treat a non-symmetrical longitudinal 
distribution. Using a different approach in the computation 
of the particle density, it avoids the problem around the 
centre (or axis). Finally, the noise resulting from statistical 
data is reduced by the use of Hermite polynomials. 

Ellipsoidal Density Distribution Calculation 

Scaling the r.m.s. dimensions a, b, c to be unity along 
the principal axes of an ellipsoidal distribution, the 
distribution function n(xla, ylb, de) becomes of spherical 
type. 

For such a sphere, one can introduce its radial density 
distribution nCR) and also consider the density distribution 
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for each individual coordinate by integration of the two 
others. Refering to Fig. I, one has: 

z 

x 

y 

Fi~urc I. Dcn,ity distribution coordinates 

Selling 

and 

gives. with constant x: 

m ( : ) = IT L~ ( R ) dt 

With (<4) and 1 to represent the radial variable R: 

m (u) = IT t~ (t ) d t 

from which one obtains [8] : 

n( t) = 1 dm (u) 

IT du 

(I) 

(2) 

(3) 
(4) 

(5) 

(6) 

(7) 

For the application of the above, instead of directly 
computing the particle density n{t) as in [5] or [7], one 
determines m(x/a), m{y/b), and m{zlc), as explained in the 
next paragraphs. One takes the average value: 

(8) 

and subsequently applies the relation (7). Moreover one can 
check that the tenns in (8) are similar. Around the 
coordinate planes the densities are high and there is no 
singularity of m{x/a) around x = a (similarly for y and z). 

Hermite Expansion 

The distributions in x, y and z. for a beam with a halo 
(i.e. without well defined limits). resemble Gaussians. It is 
then appropriate to express them in the fonn of a Hermite 
expansion: 

m ( : ) = ~ Ai exp ( - 2
X
a

22 
) Hi ( : ) (9) 

with 

--=IH~ 1 N ( ) 

i !.J2ii n~O I a 
(10) 

where the Hj are Hennite polynomials. and N represents the 
total number of macroparticles per bunch. As l1l{x) is 
symmetrical around x=O, only even order polynomials are to 
be used (in practice up to i=8), with even parity terms in x 
(i.e. in 1I). This simplifies the computation of n(l) (through 
equation (7), as the differential is an analytical expression) 
as well as the space charge field integration for each 
ellipsoid representing the bunch: 

, _q{lbcxJ~ n(ll) , 
E, - 12 'I! 'I! ,is (J I) 

2Eo 0(a 2+sr (I/+s) (c 2+s) 
where q is the macroparticle charge and 

tl =x2/(a 2 +s)+l/(b2 +S)+Z2/(C 2 +s); 
computed as explained in [7]. Analogous expressions are 
valid for Ey and Ez: 

Longitudina[ Charge Density 

The density distribution in a bunch along the 
longitudinal axis is usually pear shaped (Fig. 2). The new 
routine introduces an ellipsoid computed for the denser part 
of the longitudinal distribution; this part is very similar to 
the transverse distribution. Symmetrizing it, the remaining 
part (usually less than 30 % and sometimes very small) can 
be satisfactorily represented by a second ellipsoid. 

SOD 
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n(z) 
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Figure 2. Original longitudinal beam density distribution 
(continuous line), and its computed decompostion into two 
ellipsoids (dashed lines) 

Results 

The new space charge routine has been installed in the 
very accurate and versatile code DYNAC [9]. This code can 
treat transport lines and many types of accelerating 
structures. even long elements like independent complex 
cavities or multi-cell structures. Quasi-Alvarez and also IH 
cavities. Space charge effects can be introduced not only 
once per accelerating element but at several places in case it 
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is felt useful with regard to the change in shape of the beam 
along its length. Several cases have been studied, in 
particular the IH structure of the new lead ion linac at 
CERN [10) for lOrnA of Pb27

+ and the CERN proton linac 
[II) for 213 rnA of protons. The latter case is discussed 
below. 

Thc computation with two ellipsoids instead of one 
(Fig.3) shows a significant difference in the longitudinal 
emittance growth (i.e. current emittance divided by input 
emittance). The effect on the transverse behaviour is small. 
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Figure :I Longitudinal emittance 
caiculatinns with I and 2 ellipsoids 
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FigA shows a comparison of a space charge 
computation for two ellipsoids made in gaps only. 
quadrupolcs only and made in both gaps and quadrupoles. 
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Figure 4 Longitudinal emittance growth for 2 ellipsoids 
computation for three cases (gaps only, quadrupoles only and gaps 
and quadrupoles) 

In Fig.5 another case study shows that DYNAC with 
250 particles gives similar results as DYNAC and 
PARMlLA with 1000 particles, apart from a zone of losses 

between gaps 10 and 40 where the emittance values are 
perturbed. 
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Figure 5 Longitudinal emittance growth as computed by PARMILA 
(1000 particles, SCHEFF routine) and DYNAC (250 and 1000 
particles. new routine. 2 ellipsoids). 
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