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Abstract 

At the previous Linac Conference, we introduced a 
semi analytic Fokker-Planck formalism for calculating the 
evolution of intense, nonrelativistic, mismatched beams 
propagating through focusing channels. We have since 
elaborated on its physical basis and greatly expanded its 
applicability. In this paper, we implement the model to study 
the dynamics of a circularly symmetric beam propagating 
through a linear focusing channel. An example is discussed 
for an ion beam and accelerator parameters which are 
representative of high-current spallation neutron sources in 
which space-charge forces are important. The example 
illustrates the dynamics of emittance growth and halo 
formation in the beam. 

Introduction 

A space-charge-dominated beam which is rms-mismatched 
upon injection into an acceleration stage undergoes a very 
complicated evolutionary sequence. As a consequence of 
mismatch the beam relaxes to a state of quasi-equilibrium on 
a time scale which can be short compared to the acceleration 
time, and which is much shorter than the collisional relaxation 
time. The relaxation is a collisionless process akin to violent 
relaxation in stellar systems, and it is due to the excitation of 
a turbulent spectrum of electrostatic fluctuations. This 
spcctrum is triggered almost immediately, i. e., after roughly 
one-quarter of the beam's plasma period, and it then contains 
the free energy associated with the mismatch. As particles 
interact with the rapidly fluctuating global and local self-fields 
of the beam, their energies are not conserved. Instead, the 
particles gradually consume the free energy, thereby 
dissipating the turbulent spectrum. This results in an overall 
"heating" of the beam, with some particles being ejected into 
large-amplitude orbits. Thus, the net effects of violent 
relaxation are emittance growth and halo formation. 

In earlier papers we introduced a semianalytic Fokker
Planck-Poisson (FPP) formalism with which to calculate the 
rapidly evolving beam properties as functions of time [1-3]. 
In particular, Ref. [3] provides a detailed account of the 
evolutionary sequence, the justification for the FPP approach, 
and the method for solving the governing equations. The 
basic idea is to decompose the distribution function of particles 
in the phase-space of a single particle into a coarse-grained 
component and localized fluctuations. The fluctuation 
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spectrum generates dynamical friction and diffusion in velocity 
space which in tum drive the coarse-grained distribution 
toward Maxwell-Boltzmann equilibrium. Thus, FPP 
incorporates a working hypothesis that the quasi-stationary 
state resulting from violent relaxation is Maxwell-Boltzmann. 

FPP, being a statistical theory, accounts for the orbits of 
all of the particles comprising the beam. Thus, in principle, 
FPP also accounts for the totality of the mode spectrum, i. e., 
for both systematic global oscillations and stochastic local 
fluctuations. It nevertheless is instructive to consider 
separately the effects of the global and local modes, as has 
been the trend in the recent literature. Accordingly, in what 
follows, we shall present results of an elementary calculation 
of the time scale for particle ejection via oscillating
core/single-particle interactions, and then we shall apply the 
FPP formalism to calculate the dynamics of emittance growth 
and halo formation in a beam which is representative of high
current spallation neutron sources. 

OsciIlating-Corc/SingIc-ParticIc Dynamics 

The time scale fep for ejection of particles having orbital 

periods in resonance with the core-oscillation period fe can be 

written in the form 

1 - 1 !::.U 
cp C !::.E ' 

p 

where !::.U is the increase in the particle's potential energy 

measured at the turning points in its orbit, and !::.Ep is the 

energy the particle gains each orbital period. If the core is 

modeled as a uniform cylindrical beam of radius a, then the 
time scale for the resonant particle to climb up the potential 

well from U(r=a) to U(r=2a) is [3 J 
_ 1 3 - (h?) 21112 

fep c I' 
(l-K2)F(2p; -I) 

where the tunc depression K is the ratio of the betatron 
wavenumber with space charge to the betatron wavenumber 
without space charge, 

F(x) = 4x+l -2l~1\n(x) + 2In(x) , 
x-I x-I 

and Po is the ratio of the rms beam size at 1=0 to the rms size 
of the matched beam. 

In Figure I, lep is plotted versus K for various choices of 

Po' We see that, for small tune depressions corresponding to 
space-charge-dominated beams, the oscillating-core/single
particle interaction ejects resonant particles within just a few 
core oscillations, but the time scale for this process grows 
rapidly as space charge weakens and the tune depression 
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approaches unity. These analytic curves are consistent with 
results of numerical simulations of the interaction of single 
particles with a uniform, oscillating core [4]. The particles 
eventually go out of resonance with the core as their orbital 
amplitudes grow, and the maximum amplitude reached through 
this process is self-limiting. 
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Fig. I. Plots of ler vs. K for various choices of rms mismatch 
of a uniform, oscillating core. 

Fokker-Planek-Poisson Dynamics 

The FPP formalism includes the effects of all modes on 
the particle dynamics and provides for a self-consistent 
calculation of the structure of the "core" via Poisson's 
equation. Thus, FPP includes both the global oscillatory mode 
considered in the previous section as well as all higher-order 
modes, and it requires no a priori assumption about the 
beam's structure. In the presence of a mode spectrum, a 
statistically few particles can resonantly interact with many 
modes and reach very large amplitudes in a few orbital 
periods. This contrasts with the self-limiting nature of the 
osci llat i ng -core/single-particle interaction. 

In the FPP formalism, the Fokker-Planck equation governs 
the evolution of the coarse-grained distribution and drives it 
toward Maxwell-Boltzmann equilibrium. The fluctuations 
generate dynamical friction and diffusion in velocity space 
which give rise to the Fokker-Planck "collision" term. 
Turbulence excited as a consequence of charge redistribution 
enhances these coefficients and converts free energy due to 
mismatch into thermal energy. Poisson's equation provides 
the coarse-grained space-charge force. 

In general, the diffusion coefficient and relaxation rate 
may be expected to be functions of position, velocity, and 
time. For simplicity, and since we do not know these 
functions a priori, we ignore the position and velocity 
dependencies and model the beam as a fluctuating fluid in 
which particles execute Brownian motion. The diffusion 

coefficient is expressed as D = {3T/m, in which {3 is the 

relaxation rate, In is the single-particle mass, and T is the 
"diffusive temperature" in energy units. We adopt a 
physically plausible phenomenological model of the diffusion 

coefficient by letting T= T~ +(To-T~)exp(-{3/). Starting from 

temperature To' the beam strives to reach a 

Maxwell-Boltzmann distribution with temperature T~, and the 

heating occurs at the rate {3s2.{3 associated with "strong" 
turbulence. 

To solve the coupled Fokker-Planck and Poisson equations 
self-consistently, we decompose the coarse-grained distribution 
function into complete sets of orthogonal polynomials: 

W = L L A~~(t)if;m(u,)if;/llo)<p~(r)eipli, 
m,n,q""O f'~-OD 

where the if; 's are Gauss-Hermite functions and the <p's are 
Gauss-Laguerre functions. Here and in what follows, we use 
cylindrical coordinates and the notation of Ref. [3]. The 
decomposition results in an infinite set of first-order, nonlinear 

differential equations for the expansion coefficients A:,·.~ which 
is fully equivalent to the Fokker-Planck-Poisson equations. 
Solving this set of equations results in a self-consistent 
expression for the distribution function which may be used to 
calculate any desired moment as a function of time, including 
the particle-density profile and rms quantities. 

We have written a FORTRAN code to solve for the 
expansion coefficients of a cylindrically symmetric beam 

(found from eq. (5.11) of Ref. [3] with p=O and a =i'x=TofT). 
The code has been bench marked against a closed-form, 
analytic solution of the Fokker-Planck equation in which the 
orbits are all modeled as harmonic oscillators. It has also 
been verified to provide the correct final distribution function 
corresponding to thermodynamic equilibrium and for which 
the density profile can be calculated numerically directly from 
Poisson's equation. The solution process involves truncating 
the series of equations, solving the truncated series, then 
increasing the number of equations and solving the bigger 
series. If the solutions substantially agree, then one knows 
that a sufficient number of terms has been retained in the 
truncation. We found that a disadvantage of this method is an 
eventual sharp blowup of the solution triggered by a cascade 
to the highest-order expansion coefficient in the truncation. 
The numerical blowup will occur early in the solution if the 
beam is badly mismatched. However, we found that 
calculations for a modestly mismatched beam, like that 
expected to arise in a real machine, gave reasonably accurate 
results without early blowup using a relatively small number 
of expansion coefficients, although the accuracy of the halo's 

structure degrades with larger r. In the example below, 120 
coefficients were found to provide sufficient accuracy: 3 

values of Ill, 2 of 11, and 20 of q. 
The example we present here is representative of 

Axy-class linacs. We consider a linear focusing channel into 
which a beam with a Gaussian particle-density profile and 
Maxwellian velocity distribution is injected. The rms radius 
of the Gaussian beam is 1.2, where the unit of length is 

(2T/lI1u})112 and w is the angular betatron frequency without 

space charge. We take w = Wo = 1 and wr = 1.5. The rms 
radius of the equilibrium (matched) beam is 1.46. This 
example therefore resembles a transition to weaker focusing. 
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The input beam is modestly (20 %) rms-mismatched, and it is 
believed that existing techniques for accelerator design would 
keep mismatches at transitions to about this level [5]. The 
ratio of the average Debye length [6J of the matched beam to 
its rms radius is 0.47, which indicates explicitly that 
space-charge forces are important to the beam dynamics, and 
therefore the beam is also mismatched in shape. The ratio of 
final-to-initial temperature is calculated from Reiser's theory 

[7] to be T~/To = 1.21. Because the mismatch is modest, we 

assume the turbulence is always weak and take {3J ~{3 . 

Furthermore, we let {3 =0.05w, a relaxation rate compatible 
with results of numerical simulations. The initial and final 
density profiles arc illustrated in Figure 2. 

Evolution of the rms radius and rms emittance normalized 
to their initial values is shown in Figure 3. For comparison, 
curves calculated analytically by modeling all the orbits as 
harmonic oscillators are also shown. Space charge clearly has 
a significant quantitative effect on the evolution. It tends in 
this example to push particles out, increasing the size of the 
core both in configuration space and in phase space. 

Evolution of the "halo" is illustrated in Figure 4. This 
figure shows the number of particles lying outside fixed radii 
equal to 1, 1.5, and 2. Curves calculated analytically with 
model harmonic-oscillator orbits are also shown, and once 
again it is seen that the nonlinear space-charge forces tend to 
push particles farther away from the beam axis, as is 
consistent with Figure 3. It is also seen that, in this example, 
the process is somewhat more prominent in the earlier stages 
of evolution than in the later stages. 

In summary, we have applied a semianalytic formalism for 
calculating emittance growth and halo formation in 
high-current beams for which space charge is important. 
Unlike oscillating-core/single-particle models, this formalism 
strives for self-consistency. It also leads to relatively fast 
computation of the transient dynamics compared to N -body 
simulations. However, it incorporates an oversimplified 
model of the very complicated microscopic dynamics which 
involves at least one free parameter representing the relaxation 
rate. Thus, while the formalism accounts for all 
halo-formation mechanisms, its predictive accuracy is limited, 
particularly with regard to the detailed halo structure. 
Accordingly, future work should focus on improvements with 
the ultimate goal of including a self-consistent calculation of 
the Fokker-Planck coefficients. 
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Fig. 2. Number-density profiles for initial mismatched beam 

(I), matched unheated beam (2), final {->oo heated beam (3). 
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Fig. 3. Rms radius, emittance normalized to {~O. 

Self-consistent solutions are denoted "S". Analytic solutions 
with harmonic-oscillator orbits are denoted" A". 
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Fig. 4. Fractional number of particles outside r = 1 (top), 

r = 1.5 (center), and r =2 (bottom). "S": self-consistent 
solutions; "A": analytic solutions. 
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