
RE-ENGINEERING CONTROL SYSTEMS

Peter Clout, Robert Westervelt, Mark Geib, and John Sinclair
Vista Control Systems, Inc.

134 B Eastgate Drive, Los Alamos, NM 87544, USA

Abstract

The pace of hardware and control system software devel­
opment forces periodic, extensive upgrades to accelerator
control systems. This paper explains why such upgrades are
necessary, what aspects of an accelerator control system must
be upgraded, several methods of managing an upgrade, and
the challenges of migrating application software. The paper
also briefly describes our experience re-engineering Vista
Control System's core real-time database, Vaceess, using
modern software engineering techniques.

Introduction

The rapid evolution of electronic, computer, and software
technologies forces extensive, repeated upgrades in accelera­
tor control systems. Though upgrades can be time-consuming,
costly, and disruptive to operations, there are compelling rea­
sons to upgrade before your current system becomes obsolete
and unsupported.

Our experiences and those of our customers prove that
you can effectively manage the process of re-engineering your
accelerator control system. Drawing from these experiences,
we have developed a few ideas that may help you manage a
smooth control system upgrade. This paper contains the fol­
lowing information:

• Reasons to upgrade before the end of your control sys­
tem's life cycle.

• Aspects of your control system to consider upgrading.
• Methods for managing the transition between old and

new systems.
• Challenges you may face as you port software to the

new system.
• A brief case study of our experience with software ap­

plication migration as we re-engineered Vista Control
System's core real-time database, Vaccess, using modern soft­
ware engineering techniques.

Reasons to Upgrade Your System Now

Many production and research accelerators have useful
lives extending well beyond the technology cycle of computer
hardware and software. Many systems also have operational
lives that extend beyond the maintainable life of interfacing
electronics. Such extended life spans pose a management
problem: Should you invest in keeping the control system
current, or should you try to squeeze yet another year of op­
eration out of the old system? Our view is that upgrading

before the end of your current system's life cycle is preferable
to the problems accompanying system obsolescence.

Perhaps the most compelling argument for upgrading be­
fore the end of your system's life cycle is the insurmountable
obstacles you'll face when hardware or software is no longer
maintainable. Just when product development and support is
no longer available and when the pool of personnel qualified
to maintain your system has dried up, you may encounter a
barrier that limits your system's capability to accommodate
growing operations. For example, software designed to sup­
port a limited number of I/O points might break when your
growing organization exceeds the software's limits. With no
product support and little in-house expertise, you may be
forced into an on-the-spot (and extremely costly) upgrade.

Changing out a complete control system that has been
developed and extended over the years is time-consuming,
expensive, and disruptive to regular operations. But putting
off the inevitable may only compound the problems and ex­
penses associated with software upgrade.

On the other hand, an upgrade to a recently developed,
state-of-the-art system offers possibilities for easy mainte­
nance, support, and expansion. Production and research
facilities can increase efficiency by taking advantage of new
operating systems, software development facilities, and core
control systems software now on the market.

Upgrades can also add new features that lead to better
operations: protection and development environments isolated
from the running system, for example.

Aspects of the System to Upgrade

Once you've considered the alternatives and decided to
perform the upgrade, you're likely to begin extensive plan­
ning and budgeting. Here is a brief list of aspects of your
system to consider upgrading:

110 Subsystem

If you are thinking of re-engineering your I/O subsystem
during the control system upgrade, think very carefully about
the costs involved. These costs can skyrocket to $1,000 per
channel when you include engineering, installation, and
checkout. A small accelerator can have 2,000 channels, and
larger systems one or two orders of magnitude more. Though
you'll probably redesign the interface between the I/O subsys­
tem and the control system software, the expense of
re-engineering the I/O subsystem is usually prohibitive.

Computers, Networks, and Consoles

Also included in this category are updated user interfaces
that may increase productivity among users of the control
system software.

Proceedings of the 1994 International Linac Conference, Tsukuba, Japan

813

Core System Software

Core software often consists of the operating system and
software development environment, with the particular I/O
subsystem support added.

Application Codes

Designed to meet the special requirements of your partic­
ular machine and its users, application code is an ongoing
expense. Custom applications can easily represent an invest­
ment of tens of man-years.

The last three items-computers, core software, and ap­
plication codes-usually change together as a result of the
decision to change the computer family.

Two Types of Transition

Upgrading your control system requires careful planning
and a massive investment of time and money. But it is not
always necessary to take such a drastic step all at once. Our
customers have used two strategies to manage control system
modernization: continual upgrades and project upgrades.

Continual Upgrades

A continual upgrade involves running parallel operations.
This type of upgrade requires continuous effort on the part of
the controls group; such an effort will only be successful if the
caliber of people who originally designed, built, and installed
the system can be retained in the controls group.

In practice. the continual upgrade approach works suc­
cessfully only at major accelerators, where substantial new
additions to the facility and investment in controls projects
are required to keep the overall facility competitive.

To maintain continuous operations during a control sys­
tem upgrade, the accelerator must conduct dual operation
during the last part of the transition period, when the facilities
are moved over to the new system one-by-one and the old
system is eliminated. This transition period creates difficulties
for the controls staff members who, regardless of good inten­
tions, will spend more time on the old system than they did
before the project was started. 1lle most difficult continual
upgrades involve porting from application software written in
a now obsolete language.

Upgrade Projects

The second approach simply exploits the current system
until a barrier of some kind appears and management initiates
a project to upgrade the control system. A problem with this
approach is the increase in staff required to implement the
upgrade while maintaining existing operations.

Upgrade projects usually involve keeping the I/O hard­
ware intact by having the existing computer system and the
new control system share the 1/0 subsystem. 1llere are three
ways of sharing the I/O subsystem functionality during the
dual operation phase of the project:

Dual 110 Subsystem. 1lle accelerator can maintain dual
I/O subsystems during the transition to a new control system.

The key to success for this type of upgrade is to choose the
point of dual aecess. If the I/O hardware is to be changed out,
the dual access point is the wiring from the devices of the sys­
tem (see Fig. I).

Existing Transitional New
computer system control system control system

~-o D 0
r -I r -1 ~ S> S>

T ~
I/O subsystem I I I/O subsystem I I I/O subsystem I

I I I I I
Devices Devices

I r I I
Fig. I Dual I/O subsystems

Shared I/O Subsystem. The two systems can actually
share the I/O subsystem, if sharing is allowed by the existing
I/O subsystem (see Fig. 2). The new computer system is sim­
ply plugged into the existing I/O subsystem and the change
over can begin.

Transitional New Existing
computer system control system control system

=

,..---'------,

Devices
I I

D
c) :::::::::::-::::lQ>

Functionality ~
move

Fig. 2 Shared I/O subsystem

o

Devices
I I

For I/O subsystems that do not allow I/O subsystem shar­
ing, the transition can be accomplished by unplugging the old
computer, plugging the I/O subsystem into the new computer
for testing, and then restoring the old system for production
again. Alternating use of the I/O subsystem is continued until
the new control system is judged ready for operations.

Proceedings of the 1994 International Linac Conference, Tsukuba, Japan

814

Shared Computing Resources. Another technique for
dual operations is making the I/O subsystem available to the
new computers through the old computer system (see Fig. 3).
As the transition progresses, the VO subsystem is moved part­
by-part over to the new computers.

Existing
computer system

=

Transitional New
control system control system

o 0

1/0 device move
Devices

I I
Devices
I

Fig. 3 Shared computing resources

Devices
I I

Challenges of Application Software Migration

Control system software architecture should separate the
various functional components logically, with well-defined
interfaces. Such separation provides the benefit of simplicity
in development, testing, and maintenance. Valuable, facility­
specific application software (such as the physics and
engineering models) separate from the operator interface code
and the facility VO code is easily ported to the new control
system.

We have encountered a few challenges as we ported ap­
plication software. Among these challenges:

• Extracting domain knowledge from the man/machine
interface and the I/O access.

• Converting the untangled source to one of the current
languages. Examples of programming languages now seldom
supported are RTI.J2, P+, and Forth.

• Converting the operating system access when the new
operating system has radically different facilities.

Here are a couple of scenarios our customers have en­
countered:

• An application from a single computer control system
assuming fast access to any VO point is moved to a distrib­
uted computer control system. In the new, distributed system,
each VO access has a time overhead and the VO accesses
have to be organized for efficiency, whereas previously they
did not.

• New facilities have been added to the control system
using a variety of completely different technologies: There is

a PC is sitting next to a PDP-II and a Data General Nova
computer. Here the job also includes control system integra­
tion to overcome the expediencies of the past.

Re-engineering Vaccess

To support new computers and operating systems, we de­
cided to re-engineer Vaccess, our core real-time database,
rather than port the existing code. Our reasons:

• The maintenance load of the current code was becom­
ing large.

• We felt that porting the current code to a threaded envi­
ronment would be difficult.

• Since the current code was tightly coupled to the VMS/
VAX environment, the portability of the current code was low.

• New functionality planned for Vaccess would have bcen
difficult to implement without massive changes to the current
code.

Our first task was to develop a specification for the behav­
ior of Vaccess. The current software had evolved over many
years, and no precise description of behavior existed. The
behavior was defined in terms of code tightly coupled to the
VMS operating system. We will phase out the existing
implementation. To replace it, we generated a precise,
implementation-independent specification of behavior, using
a hybrid functionaVobject-oriented methodology. This deci­
sion resulted in a high-level description of data structures and
function, a description that facilitated the proper partitioning
and isolation of platform dependencies.

The design phase placed special emphasis on supporting
interoperability among diverse platforms. We included in the
design an improved ability to test the system. Our new design
also increased maintainability in anticipation of many future
enhancements.

Finally, a strict review process ensured coherence between
all phases of the development process.

The early results of implementation are high initial costs
justified by significantly lower long-term maintenance and
porting costs.

Conclusion

Upgrades to control systems can go smoothly and with
little disruption to the operations of the facility if they are
carefully planned and the appropriate additional effort is ex­
erted. We have seen such upgrades successfully implemented
as complete control system change outs, as well as simple,
successful computer and software upgrades. It is vital that
research facilities are kept current and useful for research in
order to continue to receive adequate funding. The control
system plays a role in this process by helping the operators
maintain efficient and flexible operation both directly and
through facility-specific application software.

Proceedings of the 1994 International Linac Conference, Tsukuba, Japan

815

