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Abstract 

The RF cavity code PISCES II can evaluate all the 
eigenfrequencies and fields for arbitrarily shaped axially 
symmetric RF cavities. The solutions include symmetric 
(m=O) and asymmetric modes (m>O) with 2.5-0 technique of 
assuming the sin mS and cos me dependencies. Using Finite 
Element Method with Nedelec elements. the electric or 
magnetic components ( (Ee.Er.Ez) or (He,Hr.Hz) ) are 
calculated[lJ. The resulted eigenvalue system has many zero­
eigenvalue solutions. which can be filtered out by using zero­
filter technique from the set of solutions. The eigensolutions 
of the specified number are obtained simultaneously from 
non-zero lowest frequency. 

Introduction 

The original PISCES code was written in early 1980's for 
studying DISK-ANO-WASHER (OAW) structures which 
have dipole modes close to the operating frequency. Because 
SUPERFISH can calculate only axi-symmetric modes. the 
results were not enough for analyzing such cavities. 
UL TRAFISH was once planned to develop at LosAlamos. but 
has not been available yet. Because URMEL[2J was 
developed and began to be distributed widely shortly after the 
DAW study started. PISCES had been abandoned since then. 
Because URMEL uses rectangular mesh for the calculation. 
the approximated boundary is different from that of the 
SUPERFISH. and the comparison is not straightforward. 
Recently DA W research is restarted. and PISCES is written 
for studying DA W. 

Formulation 

The differential equation for electric field E or magnetic 

field II to be solved are [3,4J. 

or. 

VxVxE+eE=O, V·E=O (in Q). 

VxVxH+eH=O, V·H=O (in Q), 

(1) 

(2) 

where k2=W2ql and n is the entire volume. In vacuum space, 
k2=w2/c2• where c is the speed of light. Boundary conditions 
are 

EXii=O or HXii=O (3) 

on electric boundaries (re) for metal surfaces. 

£.ii=O or H·ii=O (4) 

on magnetic boundaries (rm) for symmetry plane. and 

on periodic boundaries (rp), where ii denotes the outward 
nonnal on the boundary., and <p is the phase advance in the 
cell.[5.6J The periodic boundary is not a real boundary but 
only for a convenience of defining a problem. Because either 

E or H can be used as the field variable, only the electric 
field will be shown hereafter. Integrating Eq.(I) over n after 

multiplying by 8E (virtual electric field), we get 

fgE.VXVxEdv=-e fgE.Edv , (6) 

and applying Green's theorem. the following relations must 
hold for any OE : 

fr(VxE)xc5EdS- fn(VxE)-(Vxc5E) dv 

=-e fgii·Edv 

Exii=O and oExii=O on (rc), 

E·ii=O and oE·ii=O on (1m), 

(7) 

(8) 

(9) 

The lenn in the surface integration of Eq. (7) becomes zero on 
either (re) or (1m) because of the boundary condition of 
Equ's. (8) or (9). 

Finite Element Model 

Because only the axisymmetric boundary problems are 
considered, we can assume sin me. and cos me dependencies 
of Er, Ez and Ee components, and then the problem can be 
reduced to two-dimension problem: 

Ee sin m e, Er cos me, Ez cos me (10) 

Then (Ee. Er , Ez) are only functions of r and z. The field 
variables are (rEe, Er, Ez) for m;?:l and (Ea. Er• Ez) or (Ee. 
He) for m=O. The case for m2':1 will be explained here. 

Only the triangular clement is used in PISCES II. The 
shape functions used are the conventional simple linear one 
for the e component and two dimensional Nedelec 
c1emcnts[7,8J for the Er• Ez components. (See Fig. 1) Only the 
tangential component of Er• Ez is assigned on the line. and is 

constant along the line. Then E and VxE can be written as 

Fig. 1 Finite Element. e components are assigned at the 
E - i'PE H - i'PH 

I'jr- e riglot or ~jr-e righr 
(5) vertices. The tangential components are assigned on 

the line. 
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Erz 

where N , N' , NO, N z , and N r are the shape functions, and 

rEo and Erz are the field variable. 
The clement matrix equation is 

fP,T . N' rdrdz = -e LNT . N rdrdz, (13) 

where symbol e is the element volume and T denotes matrix 
transpose. The integrations are performed numerically up to 
11 th order precision. The singularity in the integrand on the 
axis, is not serious because the real divergent terms are 
eliminated by the boundary condition on the axis. By 
assembling all element matrices and applying the boundary 
condition, finally we get the general eigenvalue equation. 

- 2-
M·x=k K·x, (14) 

- -
where M and K are large sparse symmetric matrices, and X 
is an eigenvector for the field variables. Usually several 
eigensolutions starting from the smallest one but zero are of 
interest. Unfortunately, this eigenvalue problem has many 
zero eigenvalue solutions, and then special care should be 
taken. 

General Eigenvalue Solver for Large Sparse Symmetric 
Matrices [9] 

Because the matrices are sparse, only non-zero elements 
are stored by list vector technique. The method for the 
eigenvalue solver is based on the subspace method [ 10] and 
zero filter technique. The conjugate gradient method (CGM) 
is used to solve the simultaneous linear equations. 
Unfortunately, the condition number of if is getting large as 
the number of mesh increases, and then the convergence of 
the CGM goes very slow. Preconditioned CGM (pCGM) 
which utilizes the preconditioning technique is being 
considered. 

Components of PISCES II 

There are three stages in PISCES II. The flTSt one is the 
preprocessor that prepares the mesh data for the field solver 
PISCES II. For the time being, the same mesh data is used as 
POISSON / SUPERFISH ReI. 4 (PS4) [11]. MESHNET reads 
T APE35 from LA TIICE and writes out an input file for 
PISCES II. NETREF can modify the input file to subdivide 
the mesh at any place. Unlike the PS4, PISCES II can handle 
topologically non-uniform triangular mesh, because of the 
Finite Element Method. The mesh generator NET is planned 
to generate the mesh 
data directly from the 
input data for 
AUTOMESH. The 
third one is the post 
processor DISPLAY 
which displays the 
graphical information 
of field vectors and so 
on interactively. Fig. 2 Components of PISCES II 

Examples 

The relative error of k2:(j)2/c2 of the second lowest mode 
in the spherical cavity and that ofTMl1O mode in disk-loaded 
wave guide (the radius of cylinder = 10.779 mm, length of a 
period = 8.7474 mm, disk thickness = 2.0 mm, radius of beam 
hole = 4.5 mm) are shown in Fig. 3. The former corresponds 
to the first mode of the dipole modes ( m= 1 ) in PISCES II 
calculation, and the right frequency can be obtained 
analytically. The latter was calculated with the periodic 
boundary at the phase advance of 00 for both electric field and 
magnetic field as the variables. The frequency of the sphere 
converges within lAx 10-5 at the mesh size of 0.05 cm, which 
corresponds to 72568 elements or 144359 unknown variables. 

Mash size/A 

Fig. 3 Relative errors of kl of the second lowest mode in a spherical 
cavity and the lowest dipole mode in a disk-loaded wave guide 
as a function of the mesh siZe/A.. 
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FIg. 4 Right to left: contour plot of rEe. arrow plot of Er.Ez vector. 

and mesh plot for the sphere at mesh size=lcm. 
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Figure 4 shows the graphical output from DISPLAY for the 
spherical cavity with a 10 cm radius. Figure 5 shows that for 
the disk-loaded wave guide with phase advance of 90°. Both 
the real part and the imaginary part of the first four modes are 
plo,+ed. There are doubly degenerated modes in the periodic 
boundary problems except for the phase advance of 0° and 
180°. As seen in Fig. 5, the mesh density at each convex 
comer is increased by NETREF for the higher accuracy. The 
"converged frequency" to (=15934 MHz) of the disk-loaded 
wave guide was estimated by extrapolating the calculated 
frequencies f{!u) to the mesh size of zero assuming the 

following relation; 

f{!u) = to + a· ru:b
, (15) 

where a and b are the fitting parameters. 

Summary 

Finite Element Method with Nedelec element is useful for 
2.5D electro-magnetic field analysis of cavity resonators. In 
the current version, the computing speed is not enough, 
because the convergence of the CGM depends on the 
condition number of the matrix, which often becomes large 
for the higher mesh density problem. Using PCGM is being 
considered. 
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FIg. 5 FIeld plots the modes In dISk-loaded wave gUIde for penodlc boundary WIth phase advance of 0°. 
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