Proceedings of the 1992 Linear Accelerator Conference, Ottawa, Ontario, Canada

REGENERATIVE BBU STARTING CURRENTS IN STANDING WAVE CAVITIES*

Arthur M. Vetter and Thomas L. Buller
Boeing Defense and Space Group
P.O. Box 3999, M/S 8Y-39
Seattle, Washington 98124-2499

Abstract

An analytical method for determining regenerative beam breakup (BBU) starting current, in which the contributions of single-cell field configuration and multicell structure mode are separated, is described. The field configuration within each cell is determined to close approximation through the use of mesh codes, which also relate the wall losses to the voltage drop along the beam path. The cell-to-cell amplitude variation may be determined by bead pull measurements on model cavities, or by assuming "idealized" structure modes. As an example, the $I_{S}{ }_{L}$ product for $\mathrm{TM}_{110^{-}}$ like modes of a $433-\mathrm{MHz}, 5-c e l l$, slotcoupled cavity is obtained.

Introduction

A conventional analysis of the regenerative beam breakup (BBU) instability in standing wave linac structures leads to the result

$$
\begin{equation*}
I_{S} Q_{L}=\frac{\omega U}{\bar{V}} \tag{1}
\end{equation*}
$$

where I_{S} is the starting current, Q_{L} the loaded Q of the dipole mode, ω its angular frequency, and \vec{v} is the potential drop along the electron path (averaged over all initial electron phases) when the dipole mode is excited to stored energy U. Near the axis, the relevant field components of the dipole mode may be represented as

$$
\begin{equation*}
\mathrm{B}_{\mathrm{X}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{B}_{\mathrm{Nx}}(z) \cos (\omega t) \tag{2a}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{z}(x, y, z, t)=E_{N Z}(z) \frac{\omega Y}{c} \sin (\omega t) \tag{2b}
\end{equation*}
$$

Reasonable simplifying assumptions (beam is fully relativistic and does not change energy appreciably during transit of the structure) and choice of coordinates (origin at center of structure, which extends from $z=-a$ to $z=a$) permit one to find \bar{v} by first finding the path of the beam electrons under the influence of the fields, and then finding the work done on a charge moving along that path. For an even parity mode the result is

$$
\begin{align*}
& \overline{V_{+}}=\frac{-e \omega}{2 r m c^{3}} \int_{-a}^{a} E_{N z}(z) \\
& \cos \left[\frac{\omega z}{c}\right] d z \tag{3}\\
& x \int_{-a}^{a} E_{N z}(z) \quad z \sin \left[\frac{\omega z}{c}\right] d z,
\end{align*}
$$

[^0]where $\gamma=1+E_{k} / E_{0}$ is the normalized total relativistic electron energy and the subscript "+" denotes the even parity case. (The result for odd parity modes is similar, with the sine and cosine functions interchanged and an overall change of sign.)

In the remainder of this paper, we show how the integrals can be separated into two factors, one depending on the detailed field configuration of the mode within a cell, and the other containing all the dependence on the structure eigenmode.

Evaluation of the Field Integrals

For the following discussion, we will assume that the structure has an odd number of cells designated by the index n, which runs from $-k$ to +k . We will further assume that the cell-to-cell field strength pattern is one of the eigenmodes of an ideally tuned structure; i.e.,

$$
\begin{equation*}
E_{N z}(z)=\sum_{n=-k}^{k}\left[J_{m n} E_{1 z}\left(z-z_{n}\right)\right], \tag{4}
\end{equation*}
$$

where $z_{n}=n c / 2 f_{0}$ is the axial offset of the nth cell (f_{0} being the fundamental linac frequency), and $J_{m n}$ is the nth cell signed amplitude for the mth eigenmode of the N -cell ensemble
$J_{m n}=\sqrt{\frac{2}{N}} \sin \left[\frac{n \mathrm{~m} \pi}{\mathrm{~N}}+\frac{\mathrm{m} \pi}{2}\right] \quad(1 \leq \mathrm{m} \leq \mathrm{N}-1)$,
and

$$
\begin{equation*}
J_{\mathrm{Nn}}=\sqrt{\frac{1}{\mathrm{~N}}}(-1)^{\mathrm{n}+\mathrm{k}} \tag{5b}
\end{equation*}
$$

Consider the first of the integrals in Eqn. (3), which we denote by the symbol I_{1} :

$$
\begin{aligned}
& I_{1}=\int_{-a}^{a} E_{N z}(z) \cos \left[\frac{\omega}{c}\right] d z \\
&=\int_{-a}^{a}\left[\sum_{n=-k}^{k}\left[J_{m n} E_{1 z}\left(z-z_{n}\right)\right]\right] \cos \left[\frac{\omega z}{c}\right] d z \\
&=\sum_{n=-k}^{k}\left[J_{m n} \int_{-a}^{a} E_{1 z}\left(z-z_{n}\right) \cos \left[\frac{\omega}{c}\right] d z\right] \\
&=\sum_{n=-k}^{k} J_{m n}\left[\cos \left[\frac{\omega z_{n}}{c}\right] \int_{-a}^{a} E_{1 z}(s) \cos \left[\frac{\omega s}{c}\right] d s\right] \\
& {\left.\left[\frac{\omega z_{n}}{c}\right] \int_{-a}^{a} E_{1 z}(s) \sin \left[\frac{\omega s}{c}\right] d s\right],(6) }
\end{aligned}
$$

with $s=z-z_{n}$.
Assume that the full structure mode field has even parity. This could result from either an even parity single-cell mode (e.g., the TM_{110} mode) in combination with an even parity structure eigenmode (e.g., the pi mode of a 5 -cell structure), or an odd parity single-cell mode (like the TM_{111} mode) in combination with an odd parity structure eigenmode (e.g., the $2 \mathrm{p} / 5$ mode of a 5-cell structure). For the sake of example, let us assume that we have an even parity single-cell mode. Then the second integral in Eqn. (6) vanishes, and

$$
\begin{equation*}
I_{1}=I_{c} S_{c} \tag{7}
\end{equation*}
$$

with the definitions

$$
\begin{equation*}
I_{c}=\int_{-a}^{a} E_{12}(s) \cos \left[\frac{\omega s}{c}\right] d s \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{c}=\sum_{n=-k}^{k}\left[J_{m n} \cos \left[\frac{\omega z_{n}}{c}\right]\right] \tag{9}
\end{equation*}
$$

Applying the same approach to the second integral in Eqn. (3) (which is complicated slightly by the presence of an additional factor of z in the integrand) we obtain

$$
\begin{equation*}
I_{2}=I_{c} S_{z S}+I_{z S} S_{c} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{z s}=\int_{-a}^{a} s E_{1 z}(s) \cos \left[\frac{\omega s}{c}\right] d s \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{z s}=\sum_{n=-k}^{k}\left[J_{m n} z_{n} \cos \left[\frac{\omega z_{n}}{c}\right]\right] . \tag{12}
\end{equation*}
$$

Equation (3) can now be rewritten

$$
\begin{equation*}
\overline{V_{+}}=\frac{-e \omega}{2 \gamma m c^{3}} I_{c}^{2}\left[s_{c} s_{z s}+\frac{I_{z s}}{I_{c}} s_{c}^{2}\right] \tag{13a}
\end{equation*}
$$

Similarly, for odd parity modes,

$$
\begin{equation*}
\bar{V}_{-}=\frac{e \omega}{2 \gamma m c^{3}} I_{c}^{2}\left[S_{s} S_{z c}-\frac{I_{z s}}{I_{c}} S_{s}^{2}\right] \tag{13b}
\end{equation*}
$$

Evaluation of Single-cell Integrals.

Figure 1 shows the URMEL output for the TM_{110} mode of a $433-\mathrm{MHz}$ accelerator cavity with reentrant nose cones (Fig. 2). A number of numerical integrals are computed by the code, which integrates along a path which is offset a distance Ro from the axis, Ro being the beam hole radius $(2.5 \mathrm{~cm}$ in the example). Thus, we can approximate our integral I_{c} by

$$
\begin{aligned}
I_{c} & =\int_{-a}^{a} E_{1 z}(s) \cos \left[\frac{\omega s}{c}\right] d s \\
& \sim \frac{2 c}{\omega R 0} * \operatorname{INT} \cdot(E Z * \cos (K * Z / B)) D Z
\end{aligned}
$$

Fig. 1. URMEL printout for TM_{110} mode of cavity of Fig. 2. Boxes are drawn around values used for the example.

Fig. 2. Cell quadrant used in example calculation. Dimensions in cm .

$$
\begin{align*}
& =\frac{2 * 2.998 * 10^{8} \mathrm{~m} / \mathrm{s}}{2 * 3.14 * 8.35 * 10^{8} / \mathrm{s} * .025 \mathrm{~m}} * .2574 \mathrm{~V} \\
& =1.18 \mathrm{~V} \tag{14a}
\end{align*}
$$

and the integral $I_{z s}$ by

$$
\begin{align*}
I_{z s} & =\int_{-a}^{a} E_{1 Z}(s) s \sin \left[\frac{\omega s}{c}\right] \mathrm{ds} \\
& \sim \frac{2 c}{\omega R 0} * \operatorname{INT} \cdot(Z \star E Z * \operatorname{SIN}(\mathrm{~K} * \mathrm{Z} / \mathrm{B})) \mathrm{DZ} \\
& =\frac{2 * 2.998 * 10^{8} \mathrm{~m} / \mathrm{s}}{2 * 3.14 * 8.35 * 10^{8} / \mathrm{s} * .025 \mathrm{~m}} * .0243 \mathrm{~V} * \mathrm{~m} \\
& =.111 \mathrm{Vm}
\end{align*}
$$

Evaluation of the Summations.

Note that for π-mode acccelerator structures the ceil length is half a free space wavelength of the accelerator mode; therefore, $z_{n}=n c / 2 f_{o}$, where f_{0} is the accelerator mode frequency, whence

$$
\frac{\omega z_{n}}{c}=\frac{2 \pi f_{m}}{c} \frac{n c}{2 f_{o}}=n \pi \frac{f_{m}}{f_{o}}
$$

where f_{m} is the dipole mode frequency. Use of this equality in the summation of Eqn. (9) gives

$$
\begin{align*}
S_{c} & =\sum_{n=-k}^{k} J_{m n} \cos \left[\frac{w_{n} n}{c}\right] \\
& =\sum_{n=-k}^{k} J_{m n} \cos \left[n \pi \frac{f_{m}}{f_{o}}\right] \tag{15}
\end{align*}
$$

which is obviously periodic in f_{m} / f_{o}.
Equation (12) defines summation $S_{2 S}$ it is also a periodic function of the ratio f_{m} / f_{o}.

$$
\begin{aligned}
S_{z S} & =\sum_{n=-k}^{k} J_{m n} z_{n} \sin \left[\frac{\omega_{n}}{c}\right]_{2} f_{0} \sum_{n=-k} J_{m n} n \sin \left[n \pi \frac{f_{m}}{f_{o}}\right]
\end{aligned}
$$

The summation index runs from $-k$ to $+k$, with the terms for positive and negative values making equal contributions. The $n=0$ term vanishes; therefore, the summation can be obtained by doubling the sum obtained for positive values of n :

$$
\begin{equation*}
s_{z s}=\frac{c}{f_{0}} \sum_{n=1}^{k} J_{m n^{n}} \sin \left[n \pi \frac{f_{m}}{f_{0}}\right] \tag{16}
\end{equation*}
$$

For the odd parity structure modes, similar arguments lead to these results:

$$
S_{s}=2 \sum_{n=1}^{k} J_{m n} \sin \left[\begin{array}{ll}
n \pi & \frac{f_{m}}{f_{o}} \tag{17}
\end{array}\right]
$$

and

$$
\begin{equation*}
S_{z C}=\frac{c}{f_{o}} \sum_{n=1}^{J_{m n}} n \cos \left[n \pi \frac{f_{m}}{f_{o}}\right] \tag{18}
\end{equation*}
$$

$$
\text { Example: TM } 110 \text { Band. }
$$

The structure mode-dependent summations above apply to any dipole mode band; the factor in square brackets on the right of Eqns. (13) depends on the ratio $I_{z s} / I_{c^{\prime}}$ and is therefore mode specific. For the mode found in the URMEL example above, we know the ratio of the single cell integrals is .094 m , and the reduced frequency is about 1.9. The average potential drop is plotted for each of the five modes in the band in Fig 3, where we see for reduced frequency between 1.8 and 2.0 the greatest value for \bar{V} belongs to the $m=1$ mode, for which the average potential drop is $12 \mu \mathrm{~V} / \gamma$ at the field amplitude assumed by URMEL.

The stored energy in the structure mode is the same as the single-cell stored energy in the URMEL calculation, because the eigenmodes are normalized. The corresponding stored energy for this mode is twice the half-cell value printed by URMEL, or 4.88 pJ . Using these values in Eqn. (1), we find $I_{S} Q_{L} \sim 23,000 A$ for a $5-\mathrm{MeV}$ beam.

Conclusion.

The approach outlined above allows one to scan the URMEL output for single cell dipole modes, noting those for which the shunt impedance is largest. For each of these, the reduced frequency and the ratio $I_{z s} / I_{c}$ can readily be found. These allow one to identify the structure mode with the largest value of \bar{V} and to estimate the probable value of $I_{S} Q_{L} / g$.

$$
+: m=1 \quad x: m=2 \quad \text { diam:m=3 } \quad \text { sq:m=4 blnk:m=5 }
$$

Fig. 3. Average potential drop plotted as a function of reduced frequency.

[^0]: *Sponsored by USASDC/BMD under Contract No. DASG60-90-C-0106.

