
AUTOMATION TOOLS FOR ACCELERATOR CONTROL
A NETWORK BASED SEQUENCER

Peter Clout, Mark Geib and Robert Westervelt

Vista Control Systems, Inc., 127 Eastgate Dr. #30800, Los Alamos, NM 87544

Abstract

In conjunction with a major client, Vista Control Systems has
developed a sequencer for control systems which works in
conjunction with its realtime, distributed Vsystem database.
V system is a network-based data acquisition, monitoring and
control system which has been applied successfully to both
accelerator projects and projects outside this realm of
research. The network-based sequencer allows a user to
simply define a thread of execution in any supported
computer on the network. The script defining a sequence has a
simple syntax designed for non-programmers, with facilities
for selectively abbreviating the channel names for easy
reference. The semantics cf the script contains most of the
familiar capabilities of conventional programming
languages, including standard stream I/O and the ability to
start other processes with parameters passed. The script is
compiled to threaded code for execution efficiency. The
implementation will be described in some detail and
examples will be given of applications for which the
sequencer has been used.

The Problem

Most control systems provide a conventional computer
programming interface for the operators and users to aid in the
automation of the system as the experience, understanding
and confidence in the operation ofthe machine increases. The
addition of these programs to the control system is vital to the
continued development of understanding and performance up
to and sometimes past the design goals. Several attempts have
been made in the past [1,2] to make this process easier for the
users and operators. These attempts have focussed on
developing interactive languages with realtime and
multi-processor enhancements. This has resuItedin facilities
that have been easy to use for debugging programs but where
the source program has almost always been interpreted by the
computer, resulting in slow execution, and involving the user
in defining the I/O to the hardware and taking account of the
networking between computers. Thus, the user ha" had to
worry about more than the the basic problem at hand.

Ideally, the user should be able to express the trial solution to
the problem in terms that are confined to the language of the
problem and which exclude any aspects of the I/O subsystem,
the computers, their operating systems and the networking of
the computers that make up the whole control system.
Together with a client, we have developed an automation tool
that we believe advances the art in this area.

The Background for the Line Sequencer

The predecessor to Vsystem was developed at Los Alamos
National Laboratory [3,4] and licensed to Vista Control
Systems. We have developed and documented the control
system, Vsystem, so that it is now a useful product in the
marketplace. The backbone for Vsystem is the networked
realtime database. This database is used initially to model the

I/O connections to the control system. The contents of the
database are defined by a regular ASOI file which can be
generated directly with editors or with a traditional database.
Database channel names can be freely chosen to be generally
meaningful. Code then has to be developed to make the
connection between the database and the I/O subsystem. This
code could well come with the package, but the user is also
given the documentation and help to write custom code so that
almost any I/O system can be supported. Generally, this code
is just a few lines for each type ofI/O module. The system also
supports any user written data conversion routine that can be
expressed in a computer programming language and how to
write and include these routines is documented.

The data in the database is accessed through a library of
subroutines, Vaccess. The actual database in a system can be
distributed among the computers of the system and each
computer can have many individual databases installed. Each
individual piece of the database is held in main memory as a
global section to give good performance. Vaccess routines
make the database appear to the user as one database taking
care of the computer network access. The concept is that the
user interacts directly with the database model of the machine.
The code running between the database and the I/O subsystem
ensures that the database reflects the state of the actual
machine and that requested changes are written to the I/O
subsystem.

The second component of Vsystem is the operator interface
tool, V draw. This tool allows for the rapid development of a
graphical interface between the user and the database. It is
based on the computing concepts developed at Xerox Pare in
the '70s and first popularized by Apple Computers. This tool
allows the user to draw operator windows with a draw
package and also put objects on the screen which are
connected to the data in the database. This allows the operator
to quickly see the state of the machine and make changes to
settings. By clicking with the mouse in a defined area, the
operator can also execute other programs or start another
operation in the computer. Vdraw runs under Xwindows and
with this tool, complex but intuitive windows can be defined
in hours.

Vaccess and Vdraw together provide the tools necessary to
build a supervisory control system. They also provide the
basis for the extension of the system into automation.

The Line Sequencer

The requirement for the Line Sequencer was to provide a
facility whereby scientists not familiar with conventional
computer programming languages can define the automation
of their experiments, including the analysis of the data,
without the need to learn FORTRAN. This language was
developed together with a client experienced with this
requirement.

The Sequencerprovides transparent netwott: management of
sequences of action. A powerful feature of the Line Sequencer
lies in the fact that since no special programming knowledge

Proceedings of the Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA

764

is necessary, the people most connected with the process, the
engineers, operators and users, can write the script used to
execute action. This eliminates the difficult communications/
specifications step between the user and the programmer.

The three primary components of the Line Sequencer are the
compiler, the command interface, and the engine. Commands
are entered into the Line Sequencer with a simple
English-like language. The compiler must translate this
English-like script into an intermediate language for the
sequence engine. The command interface controls and
monitors all sequences of actions and communicates back and
forth with the engines during user command execution. The
engines execute source code generated by the compiler.

The Line Sequencer creates an environment which allows
multiple servers to run multiple engines, each performing
different sequences of actions. Sequences can be repetitive or
conditional in nature. Each sequence runs in a separate
engine. This allows one server to run multiple engines
simultaneously, thus permitting several sequences of actions
to execute at the same time. Figure I is a diagram of the Line
Sequencer environment.

Compiler

The compiler is designed for easy lIse in writing V sequence
script by someone with little or no programming experience.
V sequence Script is based on a simple keyword/value syntax,
with all extra text ignored. Because you can include text and
keywords simultaneously, Vsequence script is even readable
to someone unfamiliar with it. Vsequence script has some of
the flexibility and generality of pseudo-code in that there are
many ways to express the same action. Also, the sequence
compiler generates helpful error messages and will flag
conditions or statements that it fmds ambiguous. This allows
the user several ways of expressing functionality with the
confidence that the compiler is interpreting the instructions
correctly.

Vsequence Script

English-like constructs can be used in the V sequence script
with keywords used to generate the Vsequence source code.
For example, lines of script such as

Turn VALVE12 ON to start the flow of water

or

Initialize by setting VALVE12 ON

are both acceptable. This will set the dataha.,e channel
VALVE 1 2 to the ON state. The extra text allows the script to
be self-documenting.

Figure I: Line Sequencer Environment

The user enters English-like script, which is converted to
source by the compiler. This source is then executed by the
engine. The Vsequence server monitors and controls the se­
quence of actions being executed by the engine.

The Vsequence script language has a complete set of flow
control constructs for looping and condition testing. In
addition, it has a WAIT UNTIL control construct which is
useful for holding execution until some condition is reached
in the system under control. The WAIT UNTIL control
function also has a TIMEOUT capability built-in so that it
will not hang while waiting for some condition that may never
occur. All ofthe functionality of a true programming language
has been provided. The Line Sequencer's English-like script
is a free form, context sensitive, programming language
aimed at laboratory automation. It is tightly coupled to the rest
of the Vsystem, which will greatly simplifies the command
interface.

The Line Sequence Compiler has a rich set of logical
operators (expressible in many different forms),
mathematical functions, and file I/O capahilities.
Additionally, the compiler understands the structure of the
Vaccess database and handles setting values in the database
transparently.

Command InterfaceIVsequence Server

The command interface which controls the actions of
sequences is based on a client/server model. The client is the
user interface program which accepts command., from the
user and sends them for execution to the appropriate server.
The sen'er provides and controls the resources necessary for
sequence execution, i.e. the sequence engines. This approach
allows the user to run sequences without having direct access
to the computer on which the sequence is executing, while
providing a clean mechanism for distributing the workload
over the network.

Each sequence server can support up to 32 engines running on
a node at one time. The actual number of sequence engines
executing may be less because of the VMS system

Proceedings of the Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA

765

configuration. With these 32 engines, the server can also
support up to 32 links to users at the same time. Each user's
commands are executed in the order in which they are
received by the server.

The server also provides security protections for sequences.
There are two levels of security for each sequence engme. The
engines are run under VMS user accounts and users must have
network proxy to access the a specified account. This means
that only certain users can run sequences under a given
account. Also, only these users can issue commands to the
sequence engine. The ATTACH command further restricts
access to an engine to one user at a time. Thus, two different
users cannot issue conflicting commands to an engine at the
same time.

The command interface allows complete control over the
creation and execution of sequences. There are commands to
create, set the parameters, and show the status of sequence
execution. There are also facilities provided for rudimentary
debugging of the sequence. The DEBUG mode displays the
currently executing Vsequence source instruction on the
user's terminal, while a single STEP mode executes single
instructions at a time.

Engine

The sequence engine provides an environment which will
execute Vsequence source. The instructions are intended to
provide all the functionality required to write programs which
will easily access Vsystem realtime database channels.

The instructions provide for conditional branching, time
based operations, limited control of VMS processes, and
transparent access to Vsystem database channels. The engine
provides limited aid fordebugging Vsequence source through
a debug mode and single stepping through V sequence source.
C-style I/O is provided and supports any standard VMS
stream device. In addition, support is provided for opening
DECterm windows on workstations running DECwindows.
The engine is stack based; thus, most Line Sequencer
instructions take operands off the stack and leave result.;; on
the stack. Condition handling is provided by establishing
condition handling branches which are taken when a
condition occurs at run time.

The execution of Vsequence source is very efficient. The
instructions are compiled, and a vector table of instruction
entry point.;; provides execution of instructions at run time.

The engine provides a number of utility commands to aid the
user. Forexample, during the loading ofVsequence source the
actual source lines for each instruction are stored and can be
examined with the DUMP command. The status of the engine
can be examined with the SHOW command, which provides
the current program counter and status bits.

Example

Figure 2 shows an example Line Sequencer script. In this
example, an oven is being ramr,ed up to a given values and
then allowed to cool. The '" ' character is the comment
delimiter and the "load" command causes the sequence
engine to search the database defined and load the channel
names that fit the search string. In this case, all channel names
will match. The channels can now be referenced in the script

using only the remaindt>r of the name. In the third line, the
words "make" and "degrees" are ignored and in the next to last
line there are four words that are ignored.
>.·····f i6ta···.~iJ.€hk··Jt€~~;~Yibhirihii>ri~h\;~······>·········
·Ji(:jad~pjHf .'. .
itn~~W~~£.k6iht~~g6~~~f~~~<··· .

! r2llll~iheil\jrh~Cei~olo 60</)>
Utitj,l. (s~t~~d,ht;:>iooq~tbi/lK •. '.
setyoint ·';'.set..$9ipt. +5Q •. O ..•......
wait.S . 0 secbhdi!,· ...

end

lwait for sampl~ .. to reach.l()OO.O
wait until (temp> 1000.0)

!hold at 1000.0 for 1mi:n.
wait 60.0 seconds

!go back to room temp
return the SEityointto .20~O degrees
wait Until (temp < 50.0)

Figure 2: An Example Line Sequencer Script

The source will be loaded to the engine for running. Note that
the parsed script forms the initial comments and that the
engine is a stack-{)riented device.

Conclusion

The Line Sequencer is currently in production use and has
already demonstrated its power in several demonstrations and
a production environment. As the source interface is defined
in the documentation, users can develop their own custom
interfaces should they wish. We will be developing the
capability of the Line Sequencer and also using the engine as
the basis for future automation tools.

Acknowledgements

We acknowledge the many interactions with John Thurtell,
Greg Maier and Bill Lucas of Mobil Oil Central Research
Laboratories in the definition stage of the Line Sequencer.
Greg Maier and Bill Lucas also wrote the Script Compiler of
the Line Sequencer.

References

1. M.C. Crowley-Milling and G.C. Sherim!. The Nodal
System at the SPS, CERN~78-08 ~.
2. P. Haskell, GRACES Reference Manual Version-2,
RL--84-043
3. M.A. Fuka P.N. Clout, A.P. Conley, J.O. Hill, R.B.
Rothrock, L.L. Trease and M.E. Zander, Proc. 1987 Particle
Accelerator Conf. IEEE 87CH2387-9, pp. 652-654
4. P. Clout, R. Rothrock, V. Martz, R. Westervelt and M. Geib,
Past, Present and Future of a Commercial, Graphically
Oriented Control System, Proc. Int. Conf. on Accelerator and
Large Experimental Physics Control Systems, NIM A293
(1990) 456--9

Proceedings of the Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA

766

