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Abstract 

Two recently developed computer methods to deter
mine the resonant frequency and Q ext of waveguide loaded 
cavities are described. We present an application of these 
methods to a cavity of simple form with a range of coupling 
apertures. The methods are found to be in good agreement 
with each other and also with experiment. 

1. Introduction 

In this paper we describe methods to determine the 
properties of accelerator cavities which are loaded by exter
nal waveguides designed to damp higher order beam induced 
modes. The methods use MAFIA or ARGUS computations 
of the properties of the resonant modes of the combination 
of shorted sections of the loading waveguides coupled via 
apertures to the accelerator cavities. We begin with a re
view of the method of Kroll and Yu/ which makes use of 
the relation between the frequencies of the modes and the 
lengths of the shorted waveguide sections. A useful exten
sion of this method2 (which reduces the number of lengths 
required by a factor two) will be described. It makes use of 
the fact that the derivative of the frequency with respect to 
the shorted waveguide length can be computed from stored 
energy and field strength data provided by these computer 
codes. Some comparison of the method with experimental 
determinations will also be given. As will be shown by exam
ples, the Kroll- Yu method is also well suited to experimental 
determinations of cavity properties, especially in situations 
where more standard methods are difficult to apply. 

2. Basic Approach 

We consider a cavity coupled to a waveguide through 
an aperture. We wish to determine the resonant frequencies 
and decay constants of various modes when the waveguide is 
terminated by a matched load. We neglect all internal losses 
so that the decay constant is directly related to the external 
Q of the cavity (referred to as Q henceforth). These quanti
ties can be directly related to the mode spectrum of the cou
pled cavity-waveguide system formed by shorting the waveg
uide at a distance D from the output plane, by studying the 
dependence of the mode spectrum upon the distance D. A 
typical example of this dependence is illustrated in Fig. 1, 
where the frequency f is normalized to the frequency of the 
uncoupled cavity mode and the abcissa r refers to D nor
malized to one-half the cu toff wavelength of the waveguide. 
Since all of the curves refer to a single cavity resonance, we 
refer to them as branches. The following formula provides 
an excellent four-parameter representation of these curves in 
the vicinity of the resonant frequency of the cavity. 

tan [k(w)D + X(u) + X'(u)(w - u)] = 2Q(: _ u) , (1) 

Here k( w) is equal to 27r / >'9 as usual. The parameter u rep
resents the resonant frequency of the cavity coupled through 
the output and waveguide to a matched load, while the pa
rameter Q represents the associated external Q. The re
maining two parameters, X( u) and X'( u), parameterize the 
effect of distant cavity resonances. Theoretical background 
for Eq. (1.1) is provided in the Appendix. As noted by Kroll 
and Yu, the four parameters may be determined by comput
ing four frequency-length pairs in the vicinity of the cavity 
resonance (as identified by inspection of field plots) and re
quiring that Eq. (1.1) be satisfied for each pair. A minimum 
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Fig. 1. Mode frequencies versus waveguide length. 

of four computer runs at four different lengths is required to 
produce four reasonably placed points on a single branch. On 
the other hand, if the lengths are chosen in the vicinity of an 
avoided crossing region, where two branches are adequately 
close to the resonance, only two lengths are required and 
two frequency-length pairs are taken from each of the two 
branches. This reduces the amount of computing required 
by a factor two, since the computer run typically yields all 
the modes of interest at. a specified length in a single run. 

The extension of their method which we report here 
replaces two of the frequency-length pairs with a determina
tion of the derivative of frequency with respect t.o length at 
the remaining two frequency-length pairs. By differentiating 
Eq. (1.1), we obtain 

dw [WD, 2Qu ]-1 
dD = -k(w) kc2 + X (u) + 4Q2 (w _ u)2 + u2 (2) 

where c represents the velocity of light. The four parameters 
are now determined by requiring that both Eqs. (1.1) and 
(1.2) be satisfied for the two frequency length pairs. The 
derivative which appears in Eq. (1.2) is obtained from the 
computer runs via the formula 

dw w J (p.OH2 - (OE2) dS 

dD 2 J p.oH2dV 
(3) 

which follows from cavity resonator perturbation theory. 
The volume integral in Eq. (1.3) is proportional to the stored 
energy of the mode, which is one of the standard outputs of 
a typical computer run. The surface integral is carried out 
over the shorting plane at the end of the waveguide. Since 
the field values are also available as output, it can be readily 
computed. In the case of standard waveguides, the surface 
integral can be determined from field values at single points; 
there is, of course, no electric field contribution in the case 
of TE waveguide modes. 
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Fig. 2. Test cavity with iris and waveguide output. 
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Fig. 3. Electric field plots for first four modes. 

If it is clear from an examination of the field plots as
sociated with a single computer run that two branches from 
the same cavi ty mode are present (as is often the case), then 
that run is sufficient to determine the properties of the res
onance. If only one branch is recognizable, then a second 
run at a different length will provide a second point on the 
same branch, and the determination of cavity properties can 
be made from the two runs. This latter procedure may also 
be preferable when the frequency separation of the points on 
the two branches is too large. 

3. Example 

We illustrate the procedure for the simple cavity 
shown in cross section in Fig. 2. The cavity height is cho
sen to be small as the modes of interest to us here have fre
quencies independent of cavity height. In Fig. 3 we show 
electric field plots of the first four modes for the case d/a 
= 0.5 at D = 2.0 inches. Since we are studying the lowest 
cavity mode, which is symmetric with respect to the center 
of the iris, only half of the cavity-waveguide combination is 
shown. The curves of Fig. 1 imply that no matter what value 
is chosen for D, at least one mode will be close to a cavity 
resonance. Examination of the field plots shows that it is 
the third mode which is closest to the cavity resonance, that 
modes 2 and 4 are different branches of the same resonance, 
and that mode 2 is clearly the closer of the two. Since the 
two branches nearest resonance are clearly identified, a single 
length determinat.ion of cavity properties using modes 2 and 
3 can proceed. The result obtained is frequency = 8769.07 
MHz and Q = 34.542. 
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Fig. 4. Computed Q values for test cavity. 

Fig. 5. Computed frequency values for test cavity. 

In order to investigate the stability of results with re
spect to the waveguide length D chosen, we carried out com
putations at a number of different values. We also investi
gated a number of different iris openings d/a. The results for 
Q and frequency are shown in Figs. 4 and 5. Note that the 
points arising from the first two modes are displayed with 
a different symbol than those arising from modes 2 and 3. 
The horizontal lines represent arithmetic averages of the de
terminations for each d/ a value, and are inserted to assist an 
assessment of the variation. A more thorough investigation 
of the dependence of results upon values for D and d/ a has 
been carried out for an analytic approximation to the cavity 
of Fig. 2 with zero iris thickness. The analytic approxima
tion also permits exact evaluations of the resonant frequency 
and Q to be compared with the single length determinations. 
Excellent agreement was found? 

Although single length, two-branch determinations 
proved to be satisfactory for this model at all lengths tested, 
there may be circumstances in which a two-length single 
branch determination is preferable. Accordingly, we used the 
data obtained to investigate the length dependence of the 
above results, to also test their consistency with two-length 
single-branch determinations. We were also able to compare 
results with those obtained from the Kroll-Yu method. A 
representative set of comparisons is shown in Table 1. The 
method employed for each case should be clear from the 
branch and length lists. 

4. Comparison with Experiment 

In order to compare the results from Table I with ex
perimentally determined values, a cavity conforming to the 
configuration of Fig. 2 was constructed from standard 0.9 in 
by 0.4 in waveguide and provided with a set of interchange
able irises with the d/ a values listed in Table 1. Meas~He
ments were carried out with the assistance of a Hewlttt
Packard network analyzer. The standard detuned short 
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d/a 

0.5 

0.65 

0.70 

0.75 

Frequency 
(MHz) 

8769.07 
8769.09 
8768.93 
8768.84 

8405.01 
8407.99 
8403.95 

8266.35 
8270.48 
8263.87 

8109.44 
8114.20 
8109.52 

Table I 
Lengths 

Q Branches (inches) 

34.54 2,3 2.0 
34.52 2 1.3,1.9 
34.63 2,3 2.0,2.1 
34.59 2 1.3,1.6,1.9,2.0 

10.41 2,3 2.0 
10.39 2 1.5,2.0 
10.34 2,3 1.5,2.0 

7.54 2,3 2.0 
7.48 2 1.5,2.0 
7.48 2,3 1.5,2.0 

5.57 2,3 2.1 
5.47 2 1.5,2.1 
5.55 2,3 1.5,2.1 

method of Q and frequency measurement was attempted, 
using a 0.26 x 0.90 x 0.72 inch aluminum insert attached to 
the rear cavity wall to detune the cavity. Unfortunately, it 
produced adequate detuning to carry out the measurement 
only for the case d/a = 0.5, so that we are able to report 
detuned short method results for this case only. As an alter
native, we carried out measurements for all four d/a values 
using the Kroll-Yu method. That is to say, we measured the 
phase of the reflection coefficient referred to the iris plane 
and used the Kroll- Yu four-parameter formula. The results 
obtained are shown in Table II and should be compared to 
Table I and Figs. 4 and 5. 

Table II 

d/a Frequency (MHz) Q Method 

0.50 8739 33.9 Detuned Short 
8750 ± 1 35.3 ± 1 Kroll-Yu 

0.65 8375 ± 20 10.1 ± 0.8 Kroll- Yu 
0.70 8210 ± 40 7.7 ± 0.7 Kroll-Yu 
0.75 8040 ± 30 5.5 ± 0.2 Kroll-Yu 

The uncertainties shown in Table II are crudely based 
upon variation observed with different selections of the four 
frequency phase pairs, and do not include an estimate of 
other sources of error. These variations are larger than those 
shown with different selections among the MAFIA computed 
pairs, and may reflect a lack of precision in the measure
ments. 

5. Current Applications and Future Work 
The methods described in this paper are being applied 

to the design and experimental analysis of accelerator cav
ities with heavily damped higher order modes. The exper
imental application of the method to the SLAC radial slot 
structure is described elsewhere in these proceedings3 and 
will therefore not be repeated here. Application to the cir
cumferential slot designs described there are in progress. 

Preliminary work directed towards the design of accel
erator cavities for a BE factory storage ring has indicated a 
need to deal with the problem of close resonances. We have 
recently developed an implementation procedure for the two
resonance representationlsee Eq. (A5)] mentioned in the Ap
pendix. It requires computer runs for at least two waveguide 
lengths. Initial results have been encouraging, and we hope 
to report in detail after we have more experience with the 
method. There is also a need for dealing with multiple non
symmetric outputs and with multimode waveguide loading. 

Appendix 
Theoretical Background and Derivation of Eq. (1.1) 

Following Kroll and Yu, we consider the boundary 
value problem presented by the cavity with its waveguide 
output, which we now consider to be infinitely long. We 
assume perfect conductor boundary conditions on all of the 
walls. As one proceeds along the waveguide towards infinity, 

the fields are required to approach those of the principal 
mode (assumed here to be the only one which can propa
gate without attenuation), propagating towards infinity. The 
eigenmodes of such a system are complex, with positive imag
inary part, corresponding to oscillations which are exponen
tially damped in time. Writing this eigenvalue as U + jv, 
we identify U with the resonant frequency of the waveguide 
loaded cavity and u/2v with the cavity Q. 

The z dependence of the electric field between the 
waveguide origin and the shorting plane is of the form 

e jkz + Re-Jkz 

where k = 27r/>'g, z is distance along the waveguide axis, 
and R is the reflection coefficient referred to the waveguide 
origin plane. Since it must vanish at z = D, the shorting 
plane position, it must also be proportional to 

2jsin(kz - t/J - n7r) = (eJkz _ e2Jti'e-Jkz)e-jti', 

where t/J = k(w)D. Comparing the two forms, we see that 
R = -exp(2jt/J). We now observe that because the eigenfre
quency corresponds to a situation in which there is an out
going wave but no incoming wave, the reflection coefficient 
must have a pole there. This, combined with the fact that 
R must have absolute value one for real values of w, means 
that it may be written 

R( ) 
_ W - U + jv -2JX(w) _ 2Jti' 

W - - . e - -e , 
W - U - JV 

(Al) 

where X(w) is a real function, analytic at w = u + jv. It rep
resents nonresonant effects, effects of distant resonances, and 
effects associated with the mode structure of the waveguide. 
Taking the logarithm of both sides of Eq. (AI) we find 

t/J(w) = tan-1 (_V_) - x(w) + n7r (A2) 
w-u 

We shall assume that X(w) can be adequately represented for 
real values of its argument in the vicinity of the resonance 
by the first two terms of its power series expansion about u. 
Thus, we write 

X(w) ~ X(u) + Xf(u)(w - u) (A3) 
Equation (A3) is the basic approximation upon which the 
method is based. Taking the tangent of Eq. (A2), using 
Eq. (A3), and the expressions for t/J and Q yields Eq. (1.1). 

The choice of representation of R(w) by Eq. (AI) is 
not unique. There may be situations in which it is useful, 
for instance, to exhibit two resonances. The resonances may 
be too close to the frequency of interest to make the approx
imate Eq. (A3) adequate in itself. Taking account of the 
fact that R(w) has a pole in the complex plane at both res
onances, we replace Eq. (AI) with 

R(w) = _W-Ul+jVl 
W - Ul - JVl 

w - U2 + j V2 -2JX(w) 2Jti' ----'--- e = -e . 

(A4) 
Correspondingly, Eq. (A2) becomes 

t/J(w) = tan-1 (_V_l_) + tan- 1 (_V_2_) - X(w) + mr. 
w - Ul W - U2 

(AS) 
The function X(w) is now analytic at both poles, and a 

linear approximation analogous to Eq. (A3) would normally 
be employed. 

The guidance and assistance of W. R. Fowkes and T. 
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