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Abstract 
The general properties of coupled cavi­

ties structures are studied and the condi­
tions of maximal stability of accelerating 
field distribution in respect to the ran­
dom errors of manufacturing and tuning are 
determined. To describe the biperiodic 
structures with strong coupling such as 
DAW structure a coupled oscillator model 
with couplings of two types - elastic and 
inertial - is used. It is shown that the 
field distribution stability in the multi­
coupled cavity structures depends not only 
on the frequency separation between modes 
of structure's spectrum, but also on the 
field distribution and amplitudes of these 
modes. 

Introduction 
In order to increase the field distri­

bution stability in the high energy proton 
linac~the biperiodic structures operated 
in ./l/2 standing wave mode were develo­
ped[1,2]. The main instrument for investi­
gation of the field distribution stability 
in such structures is a coupled oscillator 
model. The biperiodic chain of oscillators 
with nearest and next nei~nbor couplings 
was succesfully used in many cases [1,3" 
for example] • But this model does not gi­
ve a good a~reement between calculated 
spectrum of mode frequencies and experi­
mental spectrum of the multicoupled bipe­
riodic structure (DAW structure for exam­
ple) and does not adequately describe the 
field distribution in such structures in 
full[41 • The chain of the oscillators 
with the two types of couplings - elastic 
and inertial - is the solution of this 
problem. The conditions of the maximal fi­
eld distribution stability in the accele~ 
rating structures were specified using the 
developed oscillator model. The results 
were used and proved experimentally during 
the linac accelerator structure of Moscow 
meson factory (MMF ) tuning procedure. 

Coupled oscillator model 

~he small free oscillations of conser­
v~~ive system of coupled harmonic oscilla­
tors are described by a system of equati­
ons: 

IV 

. [ (J., -"l m'l ) X / = 0, i":1, ... I AI ( 1 ) 
/=, 

or in a matrix form: 

(2 ) 

This matrix equation is considered here as 
a model describing the standing wave stru­
cture - a chain of multiply-coupled reso­
nators. The ri~i ty 9.. and the mass mOL 
of the i-th oscillator determine the ei~en­
frequency of the i-th resonator c..:: c .9,~ /m, ... 

The elastic couplings and the inertial 
ones (nondia~onal elements of C and 1"7 
characterize the couplin~s between ma~­
netic and electrical fields of the reso­
nators. The amplitude XiJ (the i-th co-
mponent of the vector x,.. ) is some in-
te~ral characteristic of the field in the 
i-th resonator in the k-th mode of the 
chain. It to~ether with :I'l and #'1" 

determines the stored ener~ies of the ma­
~netic and electrical components of the 
field in the i-th resonator. The solution 
of the equation (2) is N ei~enfrequen­
ci es of the oscill at or syst em J2~ =,1 k , 
representing the frequency spectrum of 
the acceleratin~ structure and tV M-ort­
ho~onal ei~envectors Xi ,describing 
the field distribution at frequency ~K 

The model parameters (the elements of 
matrixes C and!1 ) may be always de­
termined if the full spectrum of the ac­
celerating structure and the field dist­
ributions of all modes are known. Usually 
only the accelerator spectrum is used for 
the model parameter determination. But 
basing on the spectral theorem (51 and 
using any ortho~onal system of vectors we 
can always find a matrix which has a gi­
ven frequency spectrum. In such approach 
we have uncertainty in the describing of 
the field distribution and loose the phy­
sical meaning of the model parameters. To 
avoid this disadvantage the proper struc­
ture of the coupled oscillator system 
must be choosed. For periodic accelera­
ting structures with half-cell termina­
tion there is a simple and reliable sign 
of the proper choice of the model struc­
ture - the eigenfrequencies of the model 
with number of oscillators (N+1) must be 
equal to odd ei~enfrequencies of the mo­
del with number of oscillators (2N+1). 
The known model (1] is a canonical form 
of the equation (2) and doesn't satisfy 
this condition in every case because of 
the properties of the matrix /'1-II.2,C1.,-1/2 
or matrix I"r'·c.. 

For DAW structure the coupled oscilla­
tor system shown in Fig.1 had been sug­
gested. The oscillators "a" and "c" have 

/ 

Fig.1 
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the eigenfrequencies cu; = sV"", and u.J,/ = Jc (me 

respectively. The subscript "'" signs the 
elastic coupling coefficient and the sub­
script "m" - the inertial ones. In the 
case of half-cell termination the end os­
cillators "a" have the rigity ~/2 and 
maSs 1110/2. The neighbouri~ oscillators 
" c" (9c + Kc~ ) and ( me -I KCf" ) 

respectively. The numerical values of the 
model parameters are determined in gene­
ral case by means of a fitting procedure 
so that the rms difference between the ex­
perimental spectrum and the calculated one 
(or between the parts of them) is minimal. 
The procedures of the parameter determina­
tion for the different models, including 
nonperiodic ones, are given in detail in 
[6] • The eigenvalues and the eigenvectors 
of the oscillator model are found by means 
of the numerical solution of the equation 
(2). The differencies between the calcu­
lated and experimental frequencies don't 
exceed 0.05%. 

It is convinient to represent the spec­
trum of the biperiodic structure model as 
the solution of the sequence or the equa­
tions [7] : 

det[~~ 1'1(&) - C(tJ) J = 0 (J) 

for every intresting 8/< = 0 - ii. /2 • The 
eigenvalues ); and.Ai are above and 
below the operating frequency respective­
ly. At the operating point a phase shift 
of a spatial harmonic between the oscilla­
tors is equal to.iL and between the osci-
llators "a" ji. /2. 

In the equation (3) the matrix 

and the matrix 

In other words the biperiodic chain of os­
cillators for every Bk is considered as 
two oscillators with the eigenvalues 

,/-Lk '" !1((}~.1 / t1(tJdz j '-Ik '" C(fJju /C(e)£>~ 
and coupled with the coefficients t?A:;WSOk 
and .?,(",cas~. The Fig.2 shows the frequency 
spectrum with a stopband of one variant 
of the DAW structure. 

The proper model structure is more im­
portant for adequate description of the 

fl. 1 r----,-----... 

-- -
1,0 r-------~~----

0,5 

o JZ/2 
cfJ 

Fig.2 
field distribution then for the exact re­
producing of the experimental spectrum. 
In this sense the developed model gives 
an intresting result. Let the eigenvec­
to~s o~ the model is expressed in form 

:r,,' "" ot-· v/ . For an idS~l structure with 
half-cell termination:ri =0/ ,COJC!v-1j tJK 

for the oscillators "a" (j is odd). In 
general case of the multicoupled biperio­
dic structure the model shows that ~'ra; 
and iJ/ ~ ~- and there is no complete com­
pensation of the nonoperating modes in 
the perturbated accelerating structure [1]. 

Field distribution stability 
BaSing on the small perturbation theo­

rem it may be shown that in the case of 
the frequency detuning of the accelerator 
structure resonators the perturbed field 
distribution of the operating mode £k 
is expressed in the terms of the unper­
turbated structure 90S 

where 4 is the matrix small perturbati­
ons. The expression (4) characterizes a 
level of mutual compensation of the upper 
and lower (with respect to A4 ) nonope­
rating modes in perturbated accelerator 
structure. It is clear from (4) that the 
worsening of the compensation is possible 
a) because of an assymetry of spectrum -
- /),,-); I"'I)~-);I ; b) because of a dis-
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balance of the nonoperating mode amplitu­
des - a':" 0; ; c) because of an inequa­
lity oJ the field distribution shapes -
- ~~*li- . 

For the periodic and biperiodic struc­
tures without the mixed and nextneighbou­
ring couplings a stopband and a separati­
on of mode frequencies play a main role 
in the field distribution stability. The 
increasing of the coupling between the 
resonators of an accelerating structure 
in order to increase the stability leads 
to an appearence of the mixed couplings 
and the next neighbouring couplings. They 
cause the amplitude disbalance and the 
asymmetry of the spectrum (simultaneosly 
or separately). For instance, in the DAW 
structure tanks of MMF linac the amplitu­
de disbalance reaches the value 0(0'-'" 1.4 
and the width of the upper part of spect­
rum is smaller then the width of the low­
er part approximately by a factor 4. So, 
the DAW structure baSically hasn't the 
complete mutual compensation of the non­
operating modes in the first order app­
roximation. 

An influence that or another factor on 
the stability depends also on an accele­
rating structure length. For the long 
structures a stopband i~ a main factor 
because ~he value 1;1.., - Ak I is very small 
and o+""u· for the nearest to .A" mode 
frequencies. For the short structures the 
asymmetry and the amplitude disbalance 
may be important. In some case the stop­
band may playa positive role compensating 
the disbalance and the asymmetry. In the 
real structures the inequal~ty ~! the 
field distribution shapes ~'~ ~ because 
of the local perturbations (detuned end 
half-cells, for example) may worse the 
stability. For the systems, consisting of 
small number of resonators, the resonant 
frequencies of which are different (four­
-tank accelerating module of MMF) this 
factor may be important [8J • 

Conclusions 
The considered factors effecting upon 

the accelerating field distribution sta­
bility were observed experimentally and 
taken into account during the accelerator 
system tuning at MMF. Inspite of the ab­
sence of the complete compensation in the 
DAW structure, this structure is much less 
sensitive to the tuning and fabrication 
errors then other biperiodic structures 
[9J. The strong couplings of the DAW 

structure provided good frequency separa­
tion of the spectrum of the 4-tank modu­
les. But in order to avoid the instability 
due to the ineqality of the field distri­
bution the special tuning procedure was 
developed (101 • 
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