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1. Introduction

In recent vears there has been a resurgence of
interest in the problem of transporting high current
beams, and in the nature of the limitations imposed bhv
space-charge forces. The motivation has largely come
from the heavy ion fusion programme. Recent advances
in computer size, and the development of 'particle in
cell' codes have facjlitated computational studies,
and experiments are providinz complementarv infor-
mation in this important but difficult field. Space
charge forces have two effects: first, they modify
(and weaken) the focusing forces, and second, thev
allow dynamic instabilities of the class known as
'microinstabilities' in plasma physics. These are
characterised by the growth of coherent longitudinal
or transverse oscillations in the beam. Manv classes
of phenomenon associated with space-charge forces can
be distinguished. Tn the present paper an attempt is
made present some of the essential phvsical ideas,
especially those relevant to the beam transport
experiments and computations to be presented at this

meeting. These are all concerned with the high
current regime, where the behaviour is 'space-charge
dominated®. These terms are later defined more

precisely, here we merely note that conventional
accelerators mainlv operate under emittance dominated
conditions.

2. The Paraxial Approximation

2.1 The Paraxial Fquation and Fmittance Concept

The paraxial equation defines particle trajectories in
'perfect' Jens and deflection svstems without aber-
ration, Tt represents the approximation known in
light opties as 'gaussian opties?'. Tn axiallv svm-
metrical magnetic Jlenses motion in two orthogonal
planes through the axis is coupled. This coupling can
be remcved by specifying co-ordinates in the 'Larmor
Frame', which rotates about the axis with a loeal
angular velocity -qB,/2m, where B, is the component of
magnetic field along the axis. T™e canonical angular
momentum in the Jaboratory frame corresponds to
mechanical angular momentum in the Larmor frame, so
that, (neglecting thermal velocities), particles
drawn from a cathode outside the magnetic field move
in a plane in the Larmor frame. In applications of
the paraxial equation to accelerator focusing svstems
there is not in general axjal svmmetrv, but in the
absence both of magnetic fields along the orhit and
skew quadrupoles, the transverse components motion in
the z-x and v-z planes are uncoupled. The fact that
the paraxial equation in the Llarmor frame is linear
and of second order implies the existence certain in-
variants, and the possibility of using transfer
matrices in beam transport calculations.

In practice one is interested in beams of particles,
consisting of ensembles of traijectories. These are
conveniently characterised +in terms of the variation
with time of the particle distribution in six dimen-
sional phase-space with co-ordinates x, by, etc. For a
nearly monhoenergetic heam in a paraxial svstem the
distribution in the three phase planes x-py etc are
uncoupled, and can he considered independently. An
analyticallv elegant, though in practice unrealistic,

distribution function for the partiecles in transverse

phase space is that of FKapchinskv and Viadimirsky,
(the K-V distribution). This s a hollow three-
dimensional ellipsoidal shell in the four dimensiona?
phase-space that has the convenient propertv that all
two dimensional projections are elliptieal, with
uniform density and sharp edges. Expressing the
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transverse momentum as derivatives of x and vy with
respect to z, x' = p,/p, = py/BYmyc, the area of these
ellipses in x-x' and v-v' planes are denoted by TEy
and me where ¢ is the emittance. The Jongitudinal
emittance, discussed in section 3, can be similarly
defined in term8 of the z-p, phase-space projection.

For non K-V distributions, the rms emittance c_, de~
fined as 8((x2){(x'2) - {xxD2)} is often convenient.
This, like g, is invariant in paraxial beam transport
systems, hut not when aberrations or non-linearities
are present. For a K-V distribution, ¢ = £ as defined
above, not the rms value of €. For K-V beams with
finite emittance, the envelope of all trajectories is
given by the K-V envelope equation, formed hv adding a
term to the paraxial eguation:

a" + kylzda - €2/a3 = 0
x 1)
b" + ky{z)b - Ei/ba =0

where a and b are the beam radii in the x-z and v-z
planes, and Kx and <y are functions of the focusing
field. For a uniform focusing channel the orbits are
sinusoidal, with wavelength (27K Y—%, For non X-V
distributions, the rms emittance can be used, and a
and b represent twice the rms radius of the beam.

2.2 Space-Charge, Perveance, and Limiting Currents

One of first applications of high current beams was
to microwave tubes. In 1941 Brillcuin described the
flow pattern now known as 'Brillouin flow', and this
strongly influenced beam design!, The focusing field
is uniform, magnetic, and in the z-direction. T™e
flow is laminar, the particle orbits are helical, and
the densitv profile is uniform. The inward Lorentz
Vg X B, force is balanced bv the sum of the outward
centrifugal and space charge forces. There is the
additional constraint that the canonical angular
momentum is zero. This implies that the electrons
circulate about the axis at the Larmor freguency. In
the Larmor frame the B, force is transformed to an
inward electric force proportional to radius: the
particles move in straight lines parallel to the axis,
the inward electric field being iust balanced bv the
external space-charge force. The emittance in the
Larmor frame is zero.

An important quantitv characterizing these heams is
the 'perveance', defined in terms of the beam current
and (non-relativistic) gun voltage as k =T/V3/2_ 71,
planar diodes, where the particles move parallel to
the electric field, Child's law states that k is con-
stant for a space charge limited cathode. The per-
veance is, however, a convenient ouantity for all
beams, If the external fields are suitably scaled,
then the flow pattern is preserved and ¥ remains con-
stant., Commonly a 'Pierce gun' is used to form a beam
which is then propagated down a 'drift tube', in which
focusing is provided.

A fundamental limitation to such flow, discussed hy
Pierce occurs when the difference of potential, ¢,
between the beam axis and the drift tube is eaual to
the beam voltage V. When this happens, some electrons
are reflected towards the gun, and a 'virtual cathode’
is formed. The critical perveance for this effect de-
pends on the geometrv: it is of order 50x10-6 amps/
(volt)3/2, (or 50 micropervs) for electrons. Tvpical
klystron guns have k of order 1 microperv. The per-
veance is an important parameter also for beam trans-
port systems, but different authors denote it by dif._



Proceedings of the 1984 Linear Accelerator Conference, Seeheim, Germany

ferent symbols and the term perveance is not vet in
general use. A convenient dimensionless form, gen-
eralized to relativistiec energies and un-neutralised
beams may be written in various wayvs as

K = 2Nry/i2y3 = 2178 ¥21y = wga?/l g‘v?c? (2)
where ro is the classical particle radius a?/lﬂrﬁomoc?,
Ip is the Alfven current T = (Une Omoo?)BY/o, and Wy
is the plasma frequency measured in the beam frame,
w 2 = nqe/mo\{%. For electrons, at non-relativistic
energies, & =1), K=15000k.,

The perveance enables the force tending to disperse
the beam to be quantified. For a beam with a K-V
distribution it can be included in the envelope
equation, and, since the forces in an elliptical
charge distrjbution depend on both axes, the two
equations 1 are coupled to give

a" + kylz)a = cf/a3 - 2K/fa+h) = 0 (3)

together with a second equation with v instead of x
and b and a interchanged. The space charge force
varies linearlyv with radius r to a maximum value at
the beam edge. The field gradient itself is propor-
tional to the current and inversely proportional to
the square of the beam radius, resulting in a force at
the beam edge inverselvy proportional to the beam
radius.

For a given type of focusing svstem, limiting currents
can be found by balancing the forces tending to focus
the beam against those tending to disperse it, namely
the emittance and perveance terms, both of which have
negative sign. The space-charge can readily be seen
as representing an outward force; the finite emittance
can be interpreted as a force arising from the pres-
sure gradient in the beam. (This can be found quite
simply from the appropriate pressure tensor). This
balance of forces evidently gives a limiting current
much smaller than the basic perveance limitation given
earlier, 1Indeed, in most accelerator situations the
difference of potential hetween the axis and the beam
edge is quite negligible compared with the bheam
energy. Instabilities can further reduce the limiting
currents: these topics are discussed later.

2.3 Flow in a Uniform Focusing Channels

It is instructive to examine the role of the para-
meters by considering some special simple solutions to
Eq.3. An axially symmetric beam with azb is consider-
ed first, with uniform focusing such that «k(z) is in-
dependent of z and equal to (1/X)?, fTwo verv simple
and well known solutions represent waists in regions
without focusing. The appropriate equations are found
by including only the relevant terms in Eq.2. In the
absence of space-charge, the emittance dominated waist
is given by amal = ¢ . This is a hyperbola, with
asymptotic angle 0, = ¢/a. With space charge but no
emittance, the space-charge spreading curve is given
by a"a = K. There is no simple analvtical expression
for a(z), but the tangential hyperbola at the waist
has asvmptotic angle © 5 = K*, With both space-charge
and emittance, the corresponding angle is given by

02 = 02 + 02 = K + a”/e2 (1)
s a

The beam is designated 'emittance' or 'space-charge'
dominated according to whether o, is much greater or
much less than O4. The ratio of these angles, K?a/g,
is a function of the beam radius; in a converging or
diverging beam there can be a transition between these
two regimes.

Another interesting simple solution is that appropri-
ate to a uniform focusing system, where Kk is independ-

ent of z. For a uniform beam a" = 03 all the trajec-
tories are sinusoidal. In the absence of space-
charge, the wavelength is given by %, = a2/e. Tf

space charge is present, then A = (a2/e€)(1+Ka2/e?)%,
From these expressions the important result follows
that, for a beam of radjus a

2 w?

A2 g2 Ka 0 p
- = =1+ %=1+ 5
5 iz s i VT )

where 0 /0, is the ratio of the phase change of the
oscillation over some fixed length of the channel with
and without space charge. (For a periodic svstem,
section 2.4, this length is taken as that of a single
period). It is interesting to see the varietvy of
forms in which this expression can be written. In the
last expression wy s the betatron frequency in the
absence of space charge. The parameter o/, is an
important one in beam transport, as will be apparent
later., When K=0 (or wn=0), o/0y=1. When e=0, then
for finite K, o =0. This means that the space-charge
and focusing forces on a single particle balance, so
that the particle moves in a straight Jine parallel to
the axis, This is what happens in the Larmor plane in
Brillouin flow, as discussed in section 2.2, Eaquation
5 is fundamental. It can be written in manv wavys,
perhaps a more familiar one is that of Reiser

. 3 2 ”
D= 2TEMET 3,380 () LSy (6)
q a o

where a is the acceptance of the channel of radius a.

Tt is convenient here to introduce the concept of
matching. In a uniform channel the heam is sajd to bhe
matched when the distribution function of particles in
xx'yy' space is independent of z. Although in general
the distribution function varies with z, an infinite
number of matched distribution functions in addition
to the K-V distribution can be found. This topic is
resumed later.

2.4 Flow in Periodic Focusing Channels

Periodic focusing channels are used both in microwave
tubes and accelerators. The usual focusing elements
are solenoids, magnetic quadrupoles or electric quad-
rupoles. The phase change of the transverse oscil-
lation experienced by a particle in passing through a
single period in the absence and presence of space-
charge are denoted by o, and ¢ respectively. The
parameters of the distribution function, in particular
the beam radius, are perforce a function of z, and a
beam is said to be matched i1f these parameters are
periodie with the lattice period. For such a beam, g,
depends on the form of the focusing lattice, ¥, and
the mean beam radius, a.

If 0, is less than about 90°, the radius of a matched
beam does not vary much along its length; furthermore,
if quadrupole focusing is used the eccentricity of the
elliptic beam cross-section is small. Under these
circumstances it is found that Eqs. 5 and 6 represent
a remarkably good approximation, (the smooth approxi-
mation). For larger values of 0,, perhaps of less
interest in practice, a more detailed investigation is
needed. This has been carried out by Reiser®, in his
paper a complete analysis, supported by graphs which
include form factors for the lattice, is presented.

It is evident from Eq. 6 that within the paraxial
theory, the maximum current in a channel of given
acceptance is greatest when £=0 and o/ dy=0. Further,
there is no limit to the current as the acceptance is
increased. In practice, 1limits would occur either
when the channel radius becomes so large that paraxial
theory is not valid or, alternatively, when the poten-
tial difference between the beam axis and the beam
edge becomes comparable to the kinetic energy of the
beam particles. From these one can find the more
accurate expressions for ¢, and 0 /0, in terms of the
lattice parameters and beam radius, and hence find the
maximum ecurrent for all values of 0 and ¢ /0, for
which a matched beam can exist.
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2.5 Limitations Arising from Beam Instabilty

The effects considered so far are associated with the
steady electrostatic fields from the beam space
charge. A high current beam represents a charged
fluid, or 'non-neutral plasma' with many degrees of
freedom. Plasma oscillation can occur, and waves,
both longitudinal and transverse, can be propagated.
Regarded as a plasma, the beam has a highly aniso~
tropic velocity distribution. It can behave as an
active medium, where energy associated with directed
motion is available for feeding instabilities.

We now discuss plasma tvpe instabilities in the space-
charge dominated regime for an initiallv paraxial K-V
beam, surrounded by a uniform, smooth conducting tube,
so that beam-wall interactions can be neglected. The
simplest situation is uniform focusing, achievable
with a uniform solenoid. A rigorous analysis of the
mode structure in such a beam indicates that, perhaps
surprisingly, instabilities do exist when © /¢ o<
0.4.3 This finding has been verified computation-
ally, details are given in ref.2. These instabilities
are mainly of academic interest, since thev arise from
the singular nature of the K-V distribution, and
saturate very rapidly, resulting in a new distribution
with little change of rms emittance. Physicallv, it
has been suggested that the instability is in a
similar class to the two-stream instabilitv™. At anv
point in the beam the transverse velocitv distrihution
is single valued in amplitude, but isotropic in angle.
This amplitude distribution broadens as the instabil-
ity develops and saturates. 8n alternative viewpoint
is that the hollow shell in Ul-dimensional phase-space
suffers Rayleigh-Tavlor instabilitv, and rearranges
itself to form a distribution with densitv that de-
creases monotonicallv from the centre. Tt is known
from thermodynamic arguments that such distributions
are stahle”.

In periodic systems other types of instabilitv become
possible also, The formal theorv, for solencid and
quadrupole channels, using the K-V distribution but
not the smooth approximation, has been presented bv
Hofmann et al3. The matched periodic solutions are
first found, and the effects on stabilitv of various
forms of perturbation are then determined making use
of a linearized Vlasov analysis. Matrix elements for
propagation of the perturbation are computed, and the
usual rules for stability are applied. Phvsically,
the oscillatjon amplitude of the individual particles
can be considered as being driven parametricallv hv
periodicitv associated with the focusing structure.

The linearized analysis of ref.? indicates the
presence of instabilities, and enables the initia)
growth rate to be calculated. Tt gives no indication,
however, of saturation phenomena. Manv resonances
have heen identified, and the stable and unstable
regions as a function hoth of Sq and'*ﬁfo are present-
ed in ref.2, From these results a conservative
'working rule' was suggested: LY P 0.4, and Jg <
600,

To determine the severity of these resonances,
especially with more realistic distributions, computa-
tional programmes and beam transport experiments have
been undertaken. Present indications are that reson-
ances are less severe than was originallv anticipated.
In the first place, saturation occurs, resulting in
relatively small emittance growth. Secondly, in non-
K-V beams the 'effective! 0/34 varies for particles
with different oscillation amplitudes. This tends to
weaken the coherence of the oseillations and sup-
presses the instabilitv., (C.f. Landau damping).

The analvtical work =so far discussed has been
restricted to paraxial conditions and K-V distribhu-
tions. For realistie beams, with non-uniform density
profile and (possibly) momentum spread, analvtical
techniques are too difficult, and recourse must be had
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to computation or experiment. Computational work
forms a bridge between the theorv, which onlv deals
with unrealistic distributions, and experiment, which
shows what really happens.

Before continuing the discussion, it is profitable to
examine some of the general features of non-paraxial

beams,

3. Non Paraxial Phenomena

3.1 Uniform Focusing Channels

In the presence of aberrations the elegant simplicitv
of gaussian optics can no longer be invoked. Trans-
verse motion in orthogonal planes in coupled, and in
axial magnetic lenses simple transformation to a
Larmor frame i3 in general no longer possible. The
presence of space-charge complicates trajectorv cal-
culations, which have do be done in a self-consistent
manner.

Despite these difficulties, there are useful approxi-
mations that can be made if the non-linearity is not
large. We start by reviewing some properties
associated with non-paraxial beam transport systems.
Probably the simplest of these conceptually is an
axially symmetrie focusing channel, uniform in the z-
direction, but with a focusing force represented by a
potential well that is not parabolic, so that the
betatron oscillation frequency is a function of the
amplitude., TImagine now a parallel beam, with radius
a,, zero emittance, and zero perveance, injected into
such a channel. After travelling a distance large
compared with A¢/.% , where &) is the difference in
betatron wavelength for large and small amplitudes of
oscillation, thorough 'phase mixing' will have occur-
red, and the beam will have an emittance of order
a2y x, From Liouville's theorem the fine-grained
phase-space density 1is still conserved, (equal to
zero!), but the coarse grained emittance has 'grown'.
It is found also that the rms emittance has increased.
This is invariant in linear systems, but can grow when
non-linearity is present. We note that in this
example the beam radius starts by being oscillatory,
but ultimately becomes uniform with radius ag.
Strictly, at a given (large) value of z, there is a
correlation between betatron phase and amplitude. In
practice, however, the beam is almost indistinguish-
able from one with small as well as large scale emit-
tance a</ 7" in which all amplitudes and phases are
present.

In the presence of space charge the behaviour is
gimilar. An initially oscillatorv envelope 'settles
down' to one which is independent of z. In general
the radial distribution in density is not uniform.
The same is true even for a channe!l with linear focus-
ing if the density distribution is not uniform, since
the overall focusing force is no longer linear.

It is of interest to consider matched distributions in
a uniform channel that do not have uniform density
profile. For a non-uniform beam, % 7% 13 not a well
defined parameter, since the betatron oscillation
wavelength is a function of amplitude furthermore,
is a function of radius. Referring to Eq.5, K is
defined, but the radius a needs to be generalized.
The rms radius (r2>§ is a convenient parameter. For a
uniform beam, this is just half the actual radius, and
30 it is convenient to take 2(r?)% as a, the effective
beam radius, Two interesting non-uniform distribu-
tions that can be matched to a uniform focusing chan-
nel are the water-bag distribution and the thermal
distribution. In the water-bag distribution, the
phase-space density is uniform within a four dimen-
sional oval volume. In the absence of space-charge
this oval is a hyperellipsoid; the radial density dis-
tribution in the beam is parabolic. As the space-~
charge is increased this distribution becomes squarer,
becoming uniform as (1-;-I(a2/52)'1 varies from unity to
zero.
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In the thermal distribution, discussed in ref.1 for
example, the gaussian transverse velocitv distribution
can be characterised by a temperature that is indepen-
dent of radius, In the absence of space-charge the
profile is gaussian, (a good approximation in wmost
accelerator applications), and as (1+Kka2/e2)-1 4g
varied from unity to zero, the profile again becomes
progressively more square. In plasma terms the tran-
sition from small to large ratio of beam radius to
Debye 1length marks the transition from emittance to
space-charge domination.

Neither of these distributions corresponds toc those
readily obtainable from a source, except perhaps in
the limiting cases of Brillouin flow, {(K=0), and a
gaussian beam with Kaz/g2 small, often assumed in
conventional beam handling calculations. An interest-
ing practical distribution, that cannot, however, be
matched to a uniform channel, is one which starts off
uniform in real space but gaussian in velocitv space.
This corresponds to the heam obtainable from a uni-
form, circular, hot cathode. 1In the absence of space-
charge, this gives rise in a uniform focusing channel
to a series of images of the cathode at half wave-
length intervals. Midway between these images are
waists with a gaussian profile, for which the trans-
verse velocity distribution s rectangular. By
adjusting the focusing field strength the rms beam
radius can be held invariant, but the shape, and hence
higher moments of the distribution, all vary periodic-
ally along the channel.

In the presence of space-charge, the motion is not
periodic. As soon as the profile becomes non-uniform,
non-linearity sets 1in, and phase mixing occurs,
Presumably the distribution settles down ultimatelv to
something like the thermal distribution described
above. Just what does happen, and to what extent
emittance growth occurs is not known.

Under these circumstances, it is pertinent to enquire
into the status of the envelope equation for non-
uniform beams. Formally, it can be shown that in the
presence of space charge, the envelope eguation is
still valid provided that a and b are interpreted as
twice the rms values. The emittance, however, is not
invariant in non-linear systems, so the equation is of
limited value. Nevertheless, it is found that in many
practical situations, where the heam is not far from
being matched, the assumption of invariant ¢ is a good
approximation. The first example in this section,
however, shows that in extreme cases it can be far
from accurate.

We conclude this section by emphasizing that even in a
uniform focusing channel, the final form assumed by an
initially non-uniform beam with space-charge is not
generally known.

3.2 Periodic Focusing Channels

For o4 > 400 smooth approximation appears to be a good
one. The determination of matched distribution
functions in the presencezgpace charge, however, other
than the K-V distribution, is not easy. Indeed, no
such distributions seem to have been explicitlv des-
cribed. Presumably in a long channel they are ulti-
mately achieved, computer simulations suggest a squar-
ing of the phase distribution with a form not incon-
sistent with the 'thermal' steady state beam discussed
in section 3.1, Can we be sure that all moments of
the density distribution for ever remain finite? TIs
there scope for 'chaotic' behaviour, and loss of some
particles to ever larger amplitudes? These questions
may be academic at present, but could become important
if very high efficiency of of transmission is to be
achieved in a channel of limited size,

Many simulations have been made of the behaviour of
non-K-V distributions in beam transport channels,
particularly water-bag and gaussian distr‘ibutions3v5.

Emittance growth occurs: not surprisingly its extent
depends very much on the degree of mismateh. An
initial rapid change in the first few periods,
associated with a radical change of the distribution
function, is often found, followed bv a decreasing
gradual growth. The initial growth is less for beams
which have the same rms radius as the matched K-V beam
with the same values of K and ¢. Instahilities aris-
ing from parametric interactions with the structure
also occur, as in a K-V distribution, but to a some-
what lesser extent. This is hardly surprising, since
the core of a real beam is almost paraxial, but the
outer regions contain orbits with non-paraxial values
of o/ q,.

No attempt is made to summarize the details of these
reults here; they will be reported later at this
meeting. It is of interest, however, to speculate on
the form of the final ‘equilibrium' distribution (if
there is one), and also on the question of whether a
method can be found of predicting the degree of emit-
tance growth. It has been suggested in this con-
nection that the transverse kinetic plus electrostatic
energy might be conserved. There are, however, simple
situations where this clearly is not the case. The
first of these is a dilute beam with K=0. TIf a K-V
beam is changed in radius by a matching section from
one channel to another, the emittance is conserved,
but the transverse energy is not. Another example is
an intense beam with large K and zero emittance, con-
fined in a magnetic focusing system of varying
strength, so that it changes radius with z., Consider-
ing a path of integration radially from the axis to
the wall, along the wall, back to the axis at a value
of z where the beam radius is different, and along the
axis, the radial components of SEdl are clearly dif-
ferent along the two radial parts. Furthermore,
/E,d1=0 at the wall, so that /E,d1 along the axis 1is
not zero. This evidently converts longitudinal to
radial energy.

Despite these observations, there is some evidence
that transverse energy conservation might be approxi-
mately true in some c¢ircumstances®,

4. Longitudinal Motion

Longitudinal beam dynamics is usually studied in con-
Jjunction with a harmonic travelling wave, with elec-
tric field in the direction of motion. In a finite
emittance beam Az and Ap are conveniently measured
with respect to the phase-stable particle. In the
absence of space-charge the motion in the potential
well of the travelling wave is well understood. In
the presence of Ez and space-charge, the phase oscil-
lation frequency is reduced, as with transverse
motion, Only when the bunch is long, and of small
radial extent in a large tube can a simple approxi-
mation corresponding to the K-V distribution for
transverse motion be set up. This requries a para-
bolic density variation with 2z, and a distribution
function which does not correspond to a uniformly
filled phase-space ellipse7.

Unfortunately this is not such a useful starting point
for the study of beam transport system as the K-V
equation is for transverse motion, since the approxi-
mations are too unrealistic. 1In systems of practical
interest the ratio of beam to tube diameter is not
small, and this implies that the fields arising from
space-charge vary with radius. Furthermore, distribu-
tions of current interest in heavy ion fusion research
tend to be uniform rather than parabolic, giving
strong non-linearity, Finally, this non-linearity
implies coupling with the transverse degrees of free-
dom. Approximate models, perhaps more appropriate to
linacs, can be constructed with ellipscidal charge
distributions, but unfortunately there is no simple
self-consistent analogy with the K-V equation.

The problem of interest in the heavy ion fusion
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problem concerns bunching in a drift space. In the
induction 1linac, acceleration also oceurs as the
particles pass the acceleration gapsy during final
focusing it is the dynamies of a drifting beam in the
final transport system that needs to be understood.
To the linear approximation described above, a bunch
would contract and expand in a manner analogous to a
transverse waistj particles would be mutually
'reflected ' and no overtaking would occur. The actual
behaviour in realistic system is complex. Formation
of a bunch of this sort is a classic problem, well
known for many years to klystron designers. No really
illuminating analysis seems to exist, but with
advancing computer power, progress on understanding
this type of situation is beginning to be made, as we
shall hear in the following presentation.

The bunching problem is analogous to that of trans-
verse waists discussed earlier. Quasi steady state
analysis, in the presence of applied E, fields and
acceleration, is more appropriate to accelerator than
beam transport systems, The problem of emittance
growth in 1linacs is of course of considerable
interest, but outside the scope of the present paper.

As with transverse motion, plasma type instabilities
can arise. In beams that are non-uniform and of
finite length, the many non-linearities make analysis
very difficulty computational and experimental
approaches are needed. The problem of deciding how to
proceed, especially with regard to longitudinal
effects, is not easy. It is discussed in the next
section.

5. Outlook and Conclusions

Understanding of the behaviour of continuous mono-
energetic beams in transport systems has made good
progress in recent years. Contributions have come
from theory, computation, and experiment. Never-
theless a great deal that will be of practical
importance remains to be learned. What, for example,
is the effect of walls near the beam that are not
cylindrical perfect conductors? After traversing a
long channel, what is the final state of a beam, and
how does this depend on the initial distribution?
Since the long term future of accelerators will be as
much concerned with high current as high energy, a
better understanding of 'tails' and ‘'halos' is
essential.

With regard to longitudinal motion, much remains to be
done. Because of the essential non-linearities, all
3ituations are different, and it is difficult to dis-
entangle relevant characteristic parameters. Care
must be taken in devising computations and experiments
both that reflect conditions of real practical inter-
est, and also are compatible with one another. Never-
theless our knowledge and experience are still so
limited that any work in this field that can be done
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for a reasonable expenditure of money and effort is to
be welcomed.

Even more intractable are problems, not discussed in
the paper, arising from partial neutralization of
beams by ions of the opposite sign. This topic has
often been studied, and a great deal of empirical
knowledge exists. Electromagnetic isotope separators,
for example, rely on almost complete neutralization
for their operation. In many situations it is,
however, an embarrassment. Although the space-charge
force is reduced, neutralization is seldom everywhere
complete and this gives rise to unpredictable non-
linear effects. Plasma oscillation giving a ‘hashy'
beam are often found. These effects are very depend-
ent on the details of particular apparatus, especially
such parameters as gas pressure and wall configuration
in addition to the particle energy and species. For
this reason anything other than very specific studies
are diffiecult to justify.

In conclusion, it is evident that continuous progress
is being made in understanding beam transport in the
space-charge dominated regime. For longitudingal
effects, the problem is so non-linear that progress
will depend on ever more elaborate simulations, and
well designed experiments. Careful thought must be
given on how to integrate these two lines of approach;
if this is well done, progress can be expected in the
coming years.
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Waists arising from space-charge and emittance. The

envelope equations are found

from Eq.3 with a=b,

including only the two relevant terms.
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Illustration of the meaning of ¢ /5, in a K-V beam with
smooth approximation. This may be expressed either in
terms on the perveance and emittance, the characteris-
tic space-charge and emittance angles, or the plasma
frequency and betatron frequencies in the absence of
space charge; this may be seen from Eq.l.
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Tllustration of emittance growth in an initially

parallel beam with K=0 injected into a uniform focus-
ing channel with non-linear focusing. The beam radius
at infinity is the same as at injection, but it does
not vary with z. Strictly, each betatron amplitude
has a defined phase, but in practice the structure is
almost indistinguishable from that of a beam in which
all phases and amplitudes are present. Note that this
is a rather special distribution; all transverse
motion is radial, there are no circumferential
components of velocity.
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Sketch showing transverse profiles of a matched dis-

tribution with thermal transverse velocities and
finite emittance in a uniform channel with linear
focusing. Transition from a square to a gaussian

density distribution occurs as o /7, varies from zero
to unity. In the intermediate regime K = E/a‘, or the
Debye length A p = a.
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Diagram to illustrate the transition from longitudinal
to transverse energy in a beam that changes its trans-
verse configuration. fEdl round the rectangle is zero
and since the contribution along the conducting wall
is zero, the value along the axis is equal to the dif-
ference of the numerically unequal radial contribu-
tions.
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