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Sunmary 

Recently a method has been developed to calculate RF­
structures without cylindrical symmetry. Geometries 
considered consisted of a repetition of two cylindrical 
segments, each characterized by a section of any shape, 
for which eigenmodes are calculated from a two­
dimensional code (HELMOT-2D). They were assumed to have 
translational symmetry. In this paper, we present again 
this method but generalized to the case of helical sym­
metry, that is,segments can be rotated from each other 
by any constant angle (POSTEL-Code), along with a 
three-dimensional treatment (HELMOT-3D Code) which be­
gins to give encouraging results. Theoretical results 
and measurenents are compared on two RF-structures cho­
sen for illustration. 

Introduction 

In the design of RF-structures for microwave tubes and 
linear accelerators, the knowledge of the whole 
pass-band and sometimes of the neighbouring bands is of 
great importance. When a new design has to be found to 
meet new performance specifications, systematic inves­
tigation by experimental modeling appears to be impre­
cise, time consuming, and very expensive. For this 
reason, computer-aided investigation tools are being 
developed ; firstly, to help find the adequate structu­
re, and secondly to refine it. The two codes presented 
here, namely POSTEL and HELMOT-3D, have been formulated 
by Thomson-CSF in an attempt to fulfill these needs. 

Two Segment RF-Structure with Helical Symmetry 

Recently, a theory has been developed and applied to 
RF-structures without axial symmetry (1). The structure 
treated was a two-segment system, ass~ed to have 
translational symmetry, that is, the whole structure 
can be generated by translation of a single period. In 
this section, this theory is 8eneralized to the case of 
helical symmetry, that is, segments can be rotated fran 
each other by any constant angle. Such geometries would 
cover a number of practical cases, some samples of 
which are illustrated in Figure 1. 

Field Expressions 

Basically, the theory is developed following the 
well-known field matchin8 method presented in a pre­
vious paper (1) making use of a coupled eigenrnode for­
malism, wherein the TE and TM-components are 
represented by the longitudinal components of magnetic 
and electric fields : 

Hz = ~ [Xn F, (anz) -j Yn F, (anz) I !/-n(r) , 
(1 ) 

!/-n (r) and 'A1 (r/ are the scalar parts of the TE and TM­
Hertz vectors, respectively, which are solved for each 
of the two cylindrical segments with the help of the 
HELMOT-2D code (2). an and!3n are the corresponding 
propagation constants, and Fl and F2 are the odd and 
even longitudinal eigenfunctions chosen such that they 
have values of ± 1 at the extremities of each segment. 
X and Y, on one hand, and Wand S, on the other hand, 
are, respectively, the real and complex parts of the 
modal components of the current vector J (Xl, Y1 ; ••• ; 
Xn , Yn ) and the voltage vector d (WI, S1 ; .,. Wn , Sn)' 
He use the following 2 x 2 rotation matrices : 

(
F' (c'mz) 0 ) 

10 (am z) = 0 F, (amz) 

=(10) =(01) s=(0-1)and 
p ° -1 ,R 1 ° \1 0 

¢ = (cos (3l-sin !3l) , 
sin!3l cos III 

(3) 

where!3 L is a half period phase shift. The 0 indices 
in 10 signifies a zero-angle rotation (the case of 
translational symmetry) and similarly, in the 
following, the e subscript in 10 ' for a rotation of 
angle e. 
Using this notation, the z-components of the magnetic 
and electric field can be written in the following clo-
sed forms : 

Hz (z, r) = 1 (az) P l' !/- (r) , 

Ez (z, r) = J (!3z) P t'1 'P(r) , 

frrnn which can be derived the other transverse 
ccmponents. 

Floquet's Theorem and the Field Matching Principle 

With field components written in the complex form of 

(4) 

(5) 

Eq (4) and Eq (5), it can be verified that the 
application of Floquet's theorem consists in multi­
plying field expression by ¢-' when one moves along the 
structure by one period 2L, as shown in Table 1. 

Table 1 

Segment 2-21 Segment 1 Segment 2 Segment 1+21 

¢E, E, ¢-I E, ¢-' EI 

,-a 1 a, ~a, a, 

In Table 1, the field expression is written in the 
coordinate system of the corresponding segment and the 
origin of ¢ is taken at the center of segment 1. It can 
be noticed that, due to symmetry, a center to center 
translation corresponds to multiplying the field by ¢ , 
the half period phase shift matrix. The field matching 
principle imposes the condition of the continuity of 
the electric field at the segment boundaries, which can 
be written as : 

(6) 

(7 ) 

and similarly for H . Eq (6) and Eq (7) are exact field 
matching equations, however, it is known that only 
transverse components need be taken into account (3). 
Furthermore, due to the orthogonality of!/- and 'P , 
Eq (6) and (7) can be written in simple integral forms 
by using coupling coefficients (1, 2) defined as 

hmn =J Wlm !/-,n dS , emn=Js 'P,m'P,ndS and s, , 
d !/- ,n (8) 

ehmn = J 'f -d CdC, 
C, 2m 

where indices 1 and 2 indicate the segment nwnber. 

Helical Symmetry 

To better visuali,e the transformation to be applied to 
10 to yield 1o, let us consider the particular case of 
e= 11 and assume segment 2 such that it coincides with 
itself after a 11-rotation (for example, a circular sha­
pe or square shape). It is assumed also that the radial 
coordinate system in segment 1 will perform the same 
rotation, i.e., field expressions in segment 1 remain 
unchanged by this rotation. For se~~ent 2, two cases 
are to be considered. If the field pattern of eigenmode 
nt"nber n is antisymmetric with respect to the symmetry 
plane of the structure, i.e., its sign r~uains un chan-
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ged by the n-rotation of the coordinate systen, then 
Fn = Fan. If, on the contrary, the field pattern is 
symmetric, the oddfunction FIn has to be replaced by 
the even function - F2n (and vice versa) in order to 
take the sign change into account. This gives 

700
0 Cd" (9) 

or : (10) 

where 1 is the transposed of 1. In observing that S is 
just a nl2-rotation matrix, the generalization of Eq 
(10) to a general helical case is straightforward and 
yields : 

where 8 is 
particular 

the rotation matrix of angle 8. In 
for 8 = n12, one has: 

1 I = _1_ 
nZ V2 C -~) (:' ~,) V~ 

Dispersion Equation 

From Eq (4) and Eq (5), using the field-matching as 
expressed in Eq (6) and Eq (7), one obtains the 
following continuity equations for the transverse 
fields : 

[(E) ""Etl (a,) +OEt , (a,)=O, 

flH)=H t1 (a,) + ° Ht2 (a,) =0, 

(11) 

(12) 

(13) 

(14) 

where the form of Q depends on the rotation angle and 
the symmetry of the field pattern in se~nent 2. To 
obtain the dispersion equation, Eq (13) and Eq (14) are 
replaced by the following integral forms 

~ kXV.J2n , f(E)dS=O, (15) 

Is, V'P,n f(E)dS=O, (16) 

Is, k x V'P, n ·f(H)dS=O, (17) 

lSI V tIi, n • f (H) d S = ° , for a II n. (18) 

Finally, by using the orthogonality property of tli n and 
<Pn ' one obtains the following dispersion equation 

-oP 

-oP J, 
(19) 

00 

where h, e, and eh represent infinite coupling matrices 
with elements of the form : 

(h) .. =h .. (10) 
IJ IJ ° 1 . . . (20) 

v', l/v',J.1', l/J.1' are diagonal matrices, such as : 

v,' = diag 1 v; n (~ ~ LI. 1 Iv; = diag l/v;n (~ ~) I ... 
where: J.1;n = [ (w/c) '-~;n ] ,v;n = [ (w/c)' oll;n] , (21) 

the indices 1 or 2 designating the segment. The 
coupling coefficients and the eigenvalues J.1'n and v'n 
are calculated from the finite element HELMOT-ZD code. 
The Q and K-matrices have different forms, depending on 
the rotation angle and the field parity with respect to 
the symmetry plane. Let us consider three particular 
cases. 

In the case of an aligned structure, Q and K are 
diagonal matrices of elements of the same type 

°on=q,-IP; 
(22) 

(23) 

In the case of an alternated structure, Qn and Ku will 
have the form of Clan and K0 2n if the corresponding 
eigenmode has an antisymmetric field pattern, i.e., 
coinciding with itself with the same sign in a 
n-rotation. Otherwise Qn and Kn take the forms : 

°nn=-q,-Ip (24) 

( /tan~'na, ° ) 
KnZn(~'na,) =~'n ° (25) 

tan~,n a, 

In the case of a crossed structure (8 = n/2), Qn and Kn 
can take three different forms : Qon and Ko2n for anti­
symmetric field,Onn and KnZn for symmetric field or 
the following forms : 

0nlZn = q,-I R (26) 

~,n (1 
KnlZ,n (~'na,) = sin 2~'na'n 2 -cos ~n a, (27) 

if field pattern is neither s~nmetric nor antis~etric 
with respect to a n/2-rotation but is symmetric with 
respect to an-rotation. 
Eq (19) is solved by the POSTEL code. For illustration, 
we consider a coupled-cavity structure. Field patterns 
of the 5 first TE-modes and the 4 first TM-modes of the 
coupling segment are given in Figure 2. Figure 3 and 
Figure 4 show the dispersion curves, calculated and 
measured, of an aligned and an alternated structure. 

One can see that the precision of the calculation is 
sufficiently good to be used for a first investigation 
prior to a more precise design which may need a three 
dimensional or an experimental modeling with a more 
realistic shape. 

The Three Dimensional Problem 

In order to deal with geometries without s~etry, the 
HELMOT-3D code has been developed to solve the three 
dimensional problen. It is derived from the finite 
elenent HELMOT-2D code developed previously to solve 
the Helmoltz equation in the two dimensional case. The 
finite element method has been largely treated in the 
literature. We would just like to indicate that the two 
dimensional problen differs from a three dimensional 
one mainly in that, in the 2-D case, the zero divergen­
ce condition is satisfied by the appropriate choice of 
field vector and the Neuman condition is automatically 
taken into account in the finite element method itself. 
In the three dimension problem, on the contrary, though 
the first condition is theoretically insured it occurs 
sometimes that the discretization introduces spurious 
solutions with nonzero divergence. The cause is not 
exactly known but it appears that the choice of a zero 
divergence trial function may help. 

The code was first tested on cylindrical cavities. The 
application of the code to cavities of realistic shape 
is in progress. The example given here corresponds to a 
klystron cavity with a rectangular envelope and a conic 
drift-tube which can be off-centered, as shown in 
Fig. 5. The side of the rectangular envelope for which 
the drift-tube is centered is 48 mm wide and the other 
side is measured by (A + B). The drift-tube is 24 mmq,ex 
and 16 mm q,in and 14,1 mm long. The first result on the 
lowest mode (shown in Table 3) is encouraging. In the 
second column, an improvement of the precision has been 
obtained by increasing the number of elenents. 
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Table 2 

A (mm) 18 18 30 

B (mm) 18 18 24 

Points (mnnber) 1456 1546 1546 

Elements (number) 260 276 276 

Theory (MHz) 3206 3190 2705 

Measured (MHz) 3175 3175 2690 

Conclusion 

The POSTEL code is currently used to shape RF­
structures from given dispersion characteristics. As 
for HELMOT-3D, further work has to be undertaken in 
order to use computer memory and time more efficiently, 
and also to increase our understanding of the spurious 
solutions encountered in the investigation of higher 
order modes. 
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Figure 1 . Examples of two segment RF-structures 

Figure 2 . Field patterns in coupling segment obtained from HELMOT-2D Code 
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Figure 3 - Measured and calculated dispersion curves with aligned coupling segments 
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Figure 4 - Measured and calculated dispersion curves with 

alternated coupling segments 

Figure 5· Klystron (half-) cavity treated by HELMOT-3D Code 
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