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Summary

To simulate time dependent electromagnetic
field, a computer code named TWA-program
( Transient Wave Analysis program )
developed. The TWA-program scluves the
equation of the vector potential, and
field lines on a computer graphic display. It
was applied to solue problems such as the
traveling microwave in a rectangular waveguide,
the dipole radiation and beam induced field in a
cavity structure.
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Introduction

In recent accelerator technology, it becomes
important to understand the time dependent
phenomena of the electromagnetic field; for
example, the transient iesponse of an accele-
rating structure against the pulsed microuave
and the short time beam loading, 1i.e.,, the wake
field loss in a cavity.

In case of the tuo-dimensional field or the
axi-symmetrical field, the vector potential has
only one component which gives all field para-
meters, UWe call this vector potential " wave
potential " in this paper. The wave potential
propagates 1in a space according to the wave
equation. The field lines are given by the egui-
potential lines of the wave potential, TWA-
program solues the wave equation of the wave
potential wusing the finite difference method,
and draws the equipotential lines on a computer
graphic display.

The BCI“programl) has been used to calculate
the beam induced field in a cavity, The memory
size of TWA-program is smaller than that of BCI-
program; about one third, because TWA-program
treates only one field parameter, i.e., the wauve
potential, on the other hand BCl-program solues
three field parameters of Er, Ez and Hg
addition, the process of calculation
than that of BCl-program.
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Wave Equation of Vector Potential

In a charge-less region, we can defime the
electric vector potential G as follows.

E =yV«G 1
The wave equation of the electric vector
potential is given by the Maxwell equations
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The relation between the electric vector
potential G and the magnetic field B is
J
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For the magnetic wvector potential, similar
expressions are given as follows
B =V<A « a4
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In case of the two-dimensional field, there
are TE and TM-modes as illustrated in fig. 1.
For the axi-symmetrical field, there are also TE

and TM-modes as Fig. 2. The field components
and the wave potentials of these modes are
listed in Table. 1,
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Fig. 1. Modes of the two-dimensional field.

( a ) TM-mode. The magnetic field and
the electric vector potential have
only the z-component and smooth in z-—
direction.

(b ) TE-mode. The electric field and
the magnetic vector potential have

only the z-~component and smooth in z-
direction.

Modes of the axi-symmetrical field.

( a ) TM-mode, The magnetic field and
the electric wvectcr potential Rave
only the 8-component and smcooth in &-—
direction. The beam induced field
also TM—-mode.

( b ) TE-mode. The electric field and
the magnetic wvector potential have
only the §-component and smooth in &~
direction.

Fig.
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TABLE I

FIELD PARAMETERS CF THE MCSES

Coordinate Two—dimensional Axi—-symmetrica!

Mode Name ™ TE ™ e
Wave Potential
(GRS Gz Az rGg rAg
Equipotential
Lines E B rE B
Transverse _
Field Bz Ez Bg tg
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The wave equations ( 2. ) and ( 5 ) have the

same form, so that the TE and TM-mode can be
solued by the same program except the boundary
conditions. For the two-dmensional field, the

wawve equation becomes
L

(et 37
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is the wave potential
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where U listed in Table 1.

For the axi-symmetricl Fier
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where U is rAg or rGg.

The beam induced field in a cavity
gtructure is a kind of the axi-symmetrical TM-
mode, and the wave potential is rGg. If there is
a charge in the calculating region, the

divergence of the electric field is not zero and
the electric vector potential can not be given
uniquely by eq. ( 1 ). To avoid this difficulty,

the beam 1is assumed to be a line charge with
zero diameter. In this case the beam is consi-
dered as flux source on the axis. The boundary
condition at the axis is given from ea. ( 3 )
[TG’Q]:’ L I"Hg-dt
Y=0 €a
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where the Ampere’s law uas used and the beam is
assumed to be running with constant velocity.
E {(z) is the line charge density.

Numerical Calculation

The calculating region is divided into the
meshes as shown in fig. 3. The difference
equations of the potential equations are given
as follows.

For the two~dimensional field,
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For the axi-symmetrica! field,
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where T is the normalized time ct,. and N is the
number of the time steps.

The wave potenatial U should satisfy the
boundary conditions listed in table 2, where the
free boundary means that the wave can propagate
the boundary without any reflection. n is the

unit vector which is normal to the boundary.

The integral time step 4T must be smaller than
convergence limit given by the following
eguations. In case of the two-dimwnsional field,

/
T T < 1. (12 )
4 ( AZZ AJZ )
For the axi-symmetrical field,
27 L 1
AT%AV2+AZZ)< 1. ( 13
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Fig. 3. The rectangular mesh for the finite

difference method.

TABLE II
BOUNDARY CONDITIONS
Axi~symmetrical

Coordinate Two-dimensional

Mode ™ TE ™ TE

Conducting

Boundary 9@/3n =0, Az = 0,3(rGed/gn = 0, rég = 0

Symmetric
Boundary Gz = 0, aAz/an =0, rGg= 0, aﬁﬁeyan =0

Free
Boundary -~
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Applications

Traveling Microwave

The field
rectangular
dependence
field.

mode.

of the traveling TE-mode in a
waveguide does not have spatial
along the direction of the electric
Hence, the field is two dimensional TE-

Fig.
traveling

4 shows the magnetic field liens of the
pulse microwave. The wave source of

TEjg-mode is located at the left boundary., The
head wave packet deminishes gradually. This is
due to the fact that the group uelocity is
smaller than the phase velocity ( dispersion J,

and the head wave packet loses its energy.
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Fig. a,

The
microwave.
40. The width of the wave
10 cm and the frequency is

the
The mesh size

propagation of pulsed
is 10 x
guide is
2600 MHz,
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Fig. 5 shouws pulsed microwave traveling

in
the rectangular wave guide with an iris ( a )
and a rod ( b ), The microwave 1is partially
reflected at the iris and the rod, so that the
field density at the left hand side becomes

greater than the right hand side, A comparison
of these field densities gives the reflection
coefficient and the transmission coefficient.
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of microwave in a
rectangular wave guide with ( a )
an iris, (b ) a rod. The right
end line is the free boundary. The
mesh size is 10 x 40,
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Fig. Poropagation

Beam Induced Field in a Cavity

6 shows the beam induced field in a di@k
accelerating structure, The electric
is derived from eq. ( 1 )t

(rGe) (

potential is given by
14 ) about the time along the

Fig.
loaded
field on the axis

14 )

The wake field
integrating ea. (
beam propagation.
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Fig. 6. Beam induced field in a disk
accelerting structure. The

size is 20 x 100.
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Dipole Radiation

The field of the dipole radiation 1is the
axi-symmetrical TM-mode. The mouing charges are
approximated by the line beams on the axis with
bunch length equal to the diameter of the charge.

Fig. 7
case of
0.5. The

arrows.

( a ) shows the dipole radiation in
the maximum velocity max is equal to
direction of the motion is shown by the
Fig., 7 ( b ) is the case of 8max = 0.8.
It 1is not necessary to say about the frequency
and the amplitude of the oscillation, because

the radiation pattern is determined only by the
maximum velocity max , and there is a scaling
taw about the pattern dimension and the
frequency.
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Fig. 7. The electric field pattern

dipole radiation., The
velocity of the oscillation
C a ) max = 0.5,

« b )~ﬁmax = 0.8,
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