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Abstract 

The physical and mathematical similarity of 
matching either electrons into high density 
Brillouin flow or ions into an RFQ channel is 
demonstrated by transforming the pertinent dif­
ferential equations to the same normalized equa­
tion. By investigating the influence of diffe­
rent kinds of build-up of the focusing force it 
is shown, that the axial gradient of this force 
is most important for the beam behaviour in the 
transition region, causing inevitably an adia­
batic beam compression. The entrance conditions 
for the beam to be matched can be expressed in 
a unique way by the compression taking place 
between the electrostatic waist of the sprea­
ding beam and of the focused beam. Results are 
given for linear, sin and sin 2 build-up and all 
relevant parameters, covering most of the prac­
tical cases of beam injection. These general 
results are used to start PARMTEQ calculations, 
which agree excellently and give some insight 
for an optimum length of the transition region. 

1. Introduction 
Electron beams can be focused by supercon­

ducting solenoids to current densities in the 
10 3 to 10" A/cm2 range". Since high intensity 
electron guns must util ize impregnated cathodes 
with current density ratings of a few A/cm 2, 
considerable beam compression becomes necessa­
ry, of which only a factor of 100 can be done 
electrostatically. On the other hand, such so­
lenoidal fiel ds cannot be made with a fiel d 
build-up short compared to the beam spread be­
haviour, therefore a correct injection of a 
high intensity electron beam into high density 
Brillouin flow utilizes the inevitable ramp of 
the magnetic field for an additional adiabatic 
magnetic beam compression 2 . As may be seen from 
fig. 1, the compression grows with increasing 
transition length. Most favorable for matching 
is the decreasing entrance slope of the beam at 
high compression rates. 

The same situation is met with the matching 
problem of a high intensity ion beam into the 
high density focused beam inside of an RFQ 
channel. Here, a certain build-up length of the 
focusing force becomes mandatory to allow for 
the adiabatic transition from the axisymmetric 
DC ion beam to the transversely RF focused beam 
of the RFQ3. 

Both matching problems will be solved in the 
same way, by transforming the appropriate diffe­
rential equations for focusing - namely the par­
axial ray equation in the electron case and the 
KV envelope equation for the RFQ ion focusing 
- into the same normalized differential equation. 
The normalization is based on the equilibrium 
focused beam and therefore leaves only one free 
parameter - cathode flux for the electron beam 
or the ratio of emittance to acceptance in the 
RFQ case. This differential equation is then 
sol ved by numerical integration, starting with 
the well defined focused beam and taking into 
account 3 different shapes for the build-up of 
the focusing force, linear, sine and square of 
sine. To come free from the normal ization fac­
tors, the results are given in terms of the beam 
compression taking place in the transition re-
g i on. 
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Fig. 1 Sine shaped build-up of the focusing 
force H(Z) for 2 different transition 
lengths, corresponding beam envelopes 
and beam spreading curves for the same 
injection conditions 

2. Normalization of the Differential Equations 
for Focuslng 

a) The Paraxial Ray Equation 
Busch's theorem being equivalent to the con­

servation of the canonical angular momentum can 
be given in the paraxial approximation as 

. niB c r~ ) 
'J! = "2" Bz \1 -~ 

Using this and the homogeneous radial space 
charge of the beam by 

E =-r 21TE o vz ·r 

( 1 ) 

(2 ) 

the radial force equation for the outermost elec­
tron of a laminar beam has the form 

r = n I 
21TE o vz ·r 

which is known as 
There exists a 

flow, where r = 0 
Bz = Bo: 

2 B 2 r" 
- £--- B~r + ~ ~ (3 ) 

the "Paraxial Ray Equation"". 
solution, called Brillouin 
for a certain set of r = r o, 

jB = E v ;.;. B2{1 - K2} 
a Z L. 0 

(4 ) 

where K = Bcr~/Bor~ is the flux compression. 
With this balance condition of eq. (4), the par­
axial ray equation eq. (3) may be written as 

which 

to 

r 
ro 

-n-2 --
4 Bo 

is normalized 
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d 2 R 1 - K2 
CfI2 = -y- -

+ ( 5) 

by 
B 

B 0 • t n B 0 • 
z H z (6 ) "2 , B: v z 

WR + 
K2 

(7) RT 
In this equation the beam radius has to be ta­
ken in units of the Brillouin radius, and the 
axial coordinate is measured by the 
beam gyration with the Larmor frequency n/2·B o ' 
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By H ~ H(Z) any axial variation of the focusing 
force can be introduced to study the beam beha­
viour. The only free parameter in this formula­
tion is the flux compression factor K, which re­
duces drastically the focused current density 
(eq. (4)), if the cathode field Bc is not made 
small with respect to the beam compression ta­
king place. 

b) The KV Envelope Equation 
The mean beam radius a of an ion beam focused 

in a RFQ is given by the KV envelope equation 5
,6. 

K 
a"~!-K(z)a+~: (8) 

Hereby it is assumed that the emittance E is 
equal in both transverse directions. K(Z) repre­
sents the average focusing force, which is in­
creasing in the matching section. The constant 
Kp represents the generalized perveance: 

_ I 2 _ 4 n E 0 mc 3 
Kp - T;;' S3 y3' where 10 - e (9) 

For the matched beam the beam radius remains the 
same for constant focusing force: 

a" ~ 0, a a 0 , K ~ Ko ( 10) 

In th is case we get from eq. (8) : 

K = Koa~ - E' (11 ) p ar , 

which is equivalent to Reiser's cu rrent limit 5
: 

I = 10 S3 y3 0 0 ex [1 - (£) '] ( 12) "2 j31" ex 

where ex = a; . ~ is defined as the acceptance, 
which causes the current to be proportional to 
the beam a rea. 

Hence the introduction of a 1 imiting current 
density would be more physical and corresponds 
to the Brillouin density (eq. (4)). In the RFQ 
case we get 

jl' ~Eo~V (Oow)'y3[1-(~)2],(13) 1m Ln-e z ~ 

where w is the operating frequency. 
Replacing the generalized perveance in eq. 

(8) by the balance condition (eq. (11)) the en­
velope equation now reads: 

a" - (£) , (£) , 
~ ex ~ a + ex 
Ko a Ko a o -a-3- ( 14) 

a 0 ar 
We abbreviate 

K ~ £ 
ex 

( 15) 

and insert new normal ized coordinates 

R = :0' Z = ~z = 0 0 ~A ( 16 ) 

to obtain 

( 17) 

which is exactly the normal ized differential 
equation for electron focusing (eq. (7)), where 
we have given the same constant K to the emit­
tance to acceptance ratio as for the flux com­
pression before. Now the axial coordinate is 
measured in terms of SA - the spatial periodi­
city of the RF field - times the phase advance 
0 0 , 

3. Numerical Integration 'lnd Resul ts 
The normal ized differential equation for the 

beam boundary (eqs. (7) and (17)) now can be 
solved by a standard Runge-Kutta subroutine for 

any given value of K (eqs. (4) and (15)) and a 
prescribed build-up of the focusing force H(Z). 
This build-up may be characterized by its shape 
(e. g. linear, sine or square of sine in this 
investigation) and by its transition length. For 
comparing different shapes of H(Z) we define the 
transition length as the reciprocal of the ma­
ximum slope of H(Z). Hence the 3 investigated 
shapes of H(Z) 

Z 0 < Z < A K 

I I H(Z) Z for 0 Z n A ( 18) sinK < < '2 
I I I s in' I A 0 < Z < 

n A '2 
have all the maximum slope 1/A and therefore the 
same transition length A. 

Since the beam is well defined for H( Z) ~ 1, 
namely R = 1 'nR' = 0, R" = 0, we start to inte­
grate at Z ~ ~ . A and decrement Z to O. The re­
sulting value~ of Ro ~ R(Z=O) and R~ = R' (Z~O) 
define the injection conditions for the beam to 
be matched. However, due to the normal ized Z­
axis, the interpretation of the slope is diffi­
cult, even more in making a match with measured 
data of the spreading beam. Known in general are 
the position and the diameter of the waist for 
the spreading beam. Therefore the position and 
the diameter of the waist should be adjusted in 
such way that correct entrance conditions Ro and 
R~ occure for injection. 

To facilitate this procedure we calculate the 
beam spreading behaviour for the entrance condi­
tions obtained. The resulting crossover radius 
Rmin then can be determined from the compression 

( 19) 

whereas the electrostatic compression 

K = (~)' (20) 
e Rmi n 

characterizes the axial position of the waist 
with respect to the focusing force build-up. 
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Fig. 2 Beam envelopes for linear, sin and sin' 
shaped ramp of the field with a transition 
length of 10 and corresponding beam sprea­
ding 

In fig. 2 we compare curves of the compressing 
beam together with curves for beam spread obtained 
with the same injection conditions for the 3 field 
build-up shapes (eq. (18)), a normalized transi­
tion length of A = 10) and K = O. We want to point 
out that the linear and the sine shaped field 
increas~ need nearly the same injection condi­
tions; where 1 inear and sine shape differ from 
each other, the beam seems to adjust adiabati­
cally. Even more surprising is the fact, that 
square of sine gives almost identical results, 
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with the difference, however, that the axial 
position of the waist is about (TI-l)*A/2 closer 
to the field ramp. Exactly this is the Z-axis 
intersection of a tangent to sin 2 in the pOint 
of maximum slope. 

The interpretation of the influence of different 
field shapes therefore is that the maximum gra­
dient of the focusing force is mainly respon­
sible for the beam behaviour. On variations of 
H(Z) in the high field region, the beam reacts 
by adiabatic compression, whereas variations at 
low field seem to be unimportant. The latter is 
not true for very long transition regions, which 
are not considered here. 
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Compression of the beam envelope by a 
tapered increase of the focusing field 
as compared to the waist of the sprea­
ding beam 

For different transition lengths A up to 10 
and values of K of 0, 0.5, 1 fig. 3 shows the 
"magnetic" compression, as defined by eq. (19). 
For short A there is nearly no K-dependence, but 
for A > 4 the shape dependence seems to die out 
at the expense of a K-dependence. For larger va­
lues of A the ratio Km/A becomes the same and 
nearly constant for linear and sine shape. A 
fairly good approximation for K < 0.7, A > 3 is 

Km 
7\ ~ 0.775 (1 - K) (21) 

which can be used for an estimate of the cross­
over radius. 

For the electrostatic compression, which the 
spreading beam should show within the transition 
region, the parameter dependence is given by 
fig. 4. Again we see no dependence for small A, 
but only K-dependence for A > 2. For small K 
« 0.7) but large A there is Ke = 3.15(1-0.36 K2). 
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Fig. 4 Compression necessary for the spreading 

beam between start of the field build-up 
and crossover 

This allows to give a simple rule for the position of 
the electrostatic waist with respect to the field 
build-up: At the intersection of the tangent to 
the field shape curve in its steepest point with 
the abscissa, the injected beam should have /r:l~ 
~ 1.8 times the crossover radius for K = 0 etc. 

The results presented here now can be used 
for both, injection of electrons into Brillouin 
flow and matching an ion beam to an RFQ channel, 
by using the appropriate normal ization formulae 
for the axial coordinate eqs. (6) and (16). In 
the electron case, however, there may also exist 
the situation, where the cathode flux term K va­
nishes with the focusing field being turned off. 
Then the beam spread behaviour for K ~ 0 is dif­
ferent and these results cannot be used, although 
the differences are small. 

4. Calculations with the PARMTEC-Code 
The results of the smooth approximation theo­

ry (chapter three) have been tested by PARMTEQ­
calculations. All computations have been carried 
out for a matching section followed by an unmo­
dul a ted RFQ-channel wi th a 1 ength of 10 SA. For 
a beam of a-particles with 10 keY injection ener­
gy, 4 mm aperture radius and an operating fre­
quency f = 18 MHz the normalized transition length 
A equals 1.05, if the actual transition length 
is 1 SA and 00 = TI/3 (60 0 )(eq. (16)). 

The input phase space ellipse parameters A,B, 
E in both transverse directions are equal and 
calculated by 

B 
tan-1(aOO O R') SA 0 

(22) A 

In the transverse directions the particle di­
stribution is of the KV-type, in the longitudi-
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nal direction it is homogeneous. 
In fig. 5 the smooth theory envelope by inte­

gration of eq. (17) and the x,y-envelopes from 
PARMTEQ are shown. The "true" oscillating enve­
lopes are well presented by the "smooth" enve­
lope, but the PARMTEQ calculations give additio­
nal informations about the beam losses. At the 
entrance of the matching section only the emit­
tance dominated beam (K = 1) is close enough to 
the axis to avoid losses on the matching elec­
trodes. In contrast, the space charge dominated 
beam (K = 0) woul d partly impinge on the el ec­
trodes. 

" 
" 

Fig. 5 
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A comparison of beam envelopes as cal­
culated with the KV smooth approxima­
tion theory and with PARMTEQ together 
with the location of the electrode 

In fig. 6 the transmission rate as a func­
tion of the matching section length is presen­
ted for different phase advances 00 for a li­
near taper. (As expected from the "smooth" re­
sults, this situation does not change, if in­
stead of a linear, a sinusoidal taper is used). 
The transmission without a matcher is less than 
50 %, going down for increasing 0o, because the 
DC-axisymmetric beam is not directly matched 
to the transversely RF-focused beam. For all 
cases the transmission is increasing conside­
rably by small matching lengths of 1 SA. The 
emittance dominated beams (K = 1) show further 
(less steep) increase for longer matchers, 
whereas the space charge dominated beams have 
a maximum of transmission for matchers of 
lengths 1 to 2 SA. This maximum of transmission 
is decreasing for higher values of 0o, but the 
total current, which is proportional to trans­
mission times square of 0o, is still increasing. 
To explain this, we assume that the distance 
between the RFQ electrodes is increasing accor­
dingly with the beam radius. Then the mean beam 
radius becomes proportional to the aperture ra­
dius and the focusing force in eq. (17) propor­
tional to 1/R3. If an emittance domina ted beam 
blows up, the ratio of the beam spreading force 
to the focusing force remains constant, while 
for a space charge dominated beam the spreading 
force at larger values of R is much stronger 
than the focusing force. 

Also there is no remarkable difference in 
using matching sections of integer or non inte­
g e r mu It i p 1 e s 0 f SA. 7 

Finally we want to point out that the trans­
mission calculations may be pessimistic. Every 
quadrupole shows end fringe fields, which may 
be used as matching sections, but do not give 
rise to particle losses. The optimum length for 
the matching section therefore coul d be sl ight­
ly higher for the space charge dominated beam 
than indicated by fig. 6. 
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Fig. 6 Beam transmission through a 10 SA long 
RFQ in dependence of the matcher length, 
the phase advance 0o, and the emittance 
to acceptance ratio K. 

5. Summary 
The matching-in problem for a RFQ has been 

sol ved in a general way by integrating the nor­
malized KV-smooth approximation envelope equa­
tion. The results are given in such a way as 
to allow an easy decision on the diameter and 
the axial position of the electrostatic waist 
withrespect to the ramp of the field build-up 
in the matcher section. It has been demonstra­
ted that the gradient of the focusing field de­
termines the entrance conditions. PARMTEQ cal­
culations are in excellent agreement with these 
results, but give information on beam losses: 
Emittance dominated beams may have complete 
transmission for very long matcher sections, 
space charge dominated beams never have full 
transmission, but require matcher sections with 
a length of 1 to 2 SA only. 

6. References 
1 II. EBIS-Workshop, Saclay-Orsay 1981, J. Aria­

ner, M. Olivier (Edts.) 
2 K. Amboss, Studies of a magnetically compres­

sed electron beam, IEEE-ED 16,11 (1969) 897 
3 N. Tokuda, S. Yamada, New formulation of the 

RFQ matching section, Los Alamos, LA-9234-C 
(1982) 313 

4 P.T. Kirstein, G.S. Kino, W.E. Waters, Space 
charge flow, Mc Graw Hill: 1967. 

5 M. Reiser, Part. Acc., Vol. 8 (1978) 167 
P. Junior, Part. Acc., Vol. 13 (1983) 231 
K.R. Crandall, Proposal for anew radial mat­
ching section for RFQ linacs. Los Alamos, Of­
fice memorandum AT1 (1983) 

Proceedings of the 1984 Linear Accelerator Conference, Seeheim, Germany

345


