A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Yokoyama, K.

Paper Title Page
MOP008 Design and Performance of Optics for Multi-Energy Injector Linac 46
 
  • Y. Ohnishi, K. Furukawa, N. Iida, T. Kamitani, M. Kikuchi, Y. Ogawa, M. Satoh, K. Yokoyama
    KEK, Ibaraki
 
  Injector linac provides injection beams for four storage rings, KEKB high energy electron ring (HER), KEKB low energy positron ring (LER), PF-AR electron ring, and PF electron ring. The injection beams for these rings have different energies and intensities. Recently, a requirement of simultaneous injection among these rings arises to make a top-up injection possible. Magnetic fields of DC magnets to confine the beam to the accelerating structures can not be changed between pulse to pulse, although the beam energy can be controlled by fast rf phase shifters of klystrons. This implies that common magnetic fields of bending magnets and quadrupole magnets should be utilized to deliver beams having different characteristics. Therefore, we have designed multi-energy optics for KEKB high energy electron ring (8 GeV, 1 nC/pulse) and PF electron ring (2.5 GeV, 0.1 nC/pulse) and present a performance of the multi-energy injector linac.  
THP038 Normal Conducting High-Gradient Studies at KEK 661
 
  • T. Higo, M. Akemoto, S. Fukuda, Y. Higashi, N. K. Kudo, S. Matsumoto, K. Takata, T. T. Takatomi, K. Ueno, K. Yokoyama
    KEK, Ibaraki
 
  Normal-conducting high field studies have been pursued at XTF, a high power X-band RF facility of KEK developed for linear collider. Three traveling-wave structures developed for X-band linear collider were studied in high field of more than 70MV/m level. High-field characteristic such as field emission properties and trip rate, etc. are studied carefully as the processing proceeds. Operation at 50MV/m level was found very stable while breakdowns happened once an hour or so at more than 70MV/m, indicating the approach to some critical point. This characteristics is discussed in conjunction with various author’s trials to make a scaling law of severe breakdowns among power, pulse width and so on. Further basic studies on field/power limitation or robustness against breakdowns in various materials are planned using narrowed waveguide configuration. Unique features related to this study is also described.  
THP087 Status of C-band Accelerating Section Development at the KEKB Injector Linac 788
 
  • T. Kamitani, T. Higo, M. Ikeda, K. Kakihara, N. K. Kudo, S. Ohsawa, T. Sugimura, T. T. Takatomi, K. Yokoyama
    KEK, Ibaraki
 
  This paper reports on C-band accelerating section development for future energy upgrade of the KEKB injector linac. Target field gradient is 42 MV/m, that is twice of the present S-band sections in the linac. Until now, we have developed four 1m-long sections based on a half-scale design of the S-band section with improvements in coupler cavity shape and in fabrication method. And the fifth accelerating section is in fabrication now. The four sections have already installed in the beam line of the linac. Together with a unit of C-band rf source (50 MW klystron, pulse modulator, rf-pulse compressor) installed in the linac, we will perform an operation test of a model C-band accelerator module that has almost same configuration as a design module in the upgrade. Results of the long-term operation test and beam acceleration study will be described. And present status of development of the fifth accelerating section will also be given.