Paper |
Title |
Page |
MO1003 |
Commissioning of the J-PARC Linac
|
6 |
|
- Y. Yamazaki
JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
|
|
|
rt in December, 2006. All the components have been installed in the linac tunnel and the klystron gallery, respectively. The preparation for the beam commissioning is under way as scheduled, except for the air-pressure control system, which delayed the powering of the cavities by one month. If no more serious trouble, the beam commissioning will start on schedule. The J-PARC linac comprises the 3-MeV, 324-MHz RFQ linac, the 50-MeV DTL, and the 181-MeV SDTL and the 400-MeV, 972-MHz ACS. It is unique by making use of many newly developed or invented accelerator technologies.
|
|
THP063 |
First High-Power ACS Module for J-PARC Linac
|
725 |
|
- H. Ao, K. Hasegawa, K. Hirano, T. Morishita, A. Ueno
JAEA/LINAC, Ibaraki-ken
- M. Ikegami
KEK, Ibaraki
- V. V. Paramonov
RAS/INR, Moscow
- Y. Yamazaki
JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
|
|
|
J-PARC Linac will be commissioned with energy of 181-MeV using 50-keV ion source, 3-MeV RFQ, 50-MeV DTL and 181-MeV SDTL (Separated DTL) on December 2006. It is planed to be upgraded by using 400-MeV ACS (Annular Coupled Structure), in a few years from the commissioning. The first high-power ACS module, which will be used as the first buncher between the SDTL and the ACS has been fabricated, and a few accelerating modules are also under fabrication until FY2006. Detail of cavity design and tuning procedure has been studied with RF simulation analysis and cold-model measurements. This paper describes RF measurement results, fabrication status, and related development items.
|
|